File size: 4,204 Bytes
b1c2932
d54a8e4
b1c2932
 
 
 
 
 
 
 
 
 
 
4bba8df
 
b1c2932
 
 
7a079bf
4bba8df
b1c2932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bba8df
b1c2932
 
 
4bba8df
b1c2932
4bba8df
 
 
 
 
 
 
b1c2932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bba8df
 
 
 
 
 
 
b1c2932
 
 
ecdbfcf
b1c2932
ecdbfcf
2180861
b1c2932
 
 
c554973
b1c2932
 
2180861
b1c2932
 
 
 
 
 
 
 
 
 
 
ebe8358
b1c2932
 
 
4bba8df
 
 
 
 
b1c2932
 
 
4bba8df
b1c2932
 
78e9c18
43f3adb
4bba8df
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import gradio as gr
import spaces

import os
import torch
import numpy as np
import pandas as pd
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
from huggingface_hub import HfApi

from label_dicts import CAP_NUM_DICT, CAP_LABEL_NAMES

from .utils import is_disk_full

HF_TOKEN = os.environ["hf_read"]

languages = [
    "English",
    "Multilingual"
]

domains = {
    "media": "media",
    "social media": "social",
    "parliamentary speech": "parlspeech",
    "legislative documents": "legislative",
    "executive speech": "execspeech",
    "executive order": "execorder",
    "party programs": "party",
    "judiciary": "judiciary",
    "budget": "budget",
    "public opinion": "publicopinion",
    "local government agenda": "localgovernment"
}

def check_huggingface_path(checkpoint_path: str):
    try:
        hf_api = HfApi(token=HF_TOKEN)
        hf_api.model_info(checkpoint_path, token=HF_TOKEN)
        return True
    except:
        return False

def build_huggingface_path(language: str, domain: str):
    language = language.lower()
    base_path = "xlm-roberta-large"

    if language == "english" and (domain == "media" or domain == "legislative"):
        lang_domain_path = f"poltextlab/{base_path}-{language}-{domain}-cap-v4"
        return lang_domain_path
    else:
        lang_domain_path = f"poltextlab/{base_path}-{language}-{domain}-cap-v3"
        
    lang_path = f"poltextlab/{base_path}-{language}-cap-v3"

    path_map = {
        "L": lang_path,
        "L-D": lang_domain_path,
        "X": lang_domain_path,
    }
    value = None

    try:
        lang_domain_table = pd.read_csv("language_domain_models.csv")
        lang_domain_table["language"] = lang_domain_table["language"].str.lower()
        lang_domain_table.columns = lang_domain_table.columns.str.lower()
        # get the row for the language and them get the value from the domain column
        row = lang_domain_table[(lang_domain_table["language"] == language)]
        tmp = row.get(domain)
        if not tmp.empty:
            value = tmp.iloc[0]
    except (AttributeError, FileNotFoundError):
        value = None

    if language == 'english':
        model_path = lang_path
    else:
        model_path = "poltextlab/xlm-roberta-large-pooled-cap"

    if check_huggingface_path(model_path):
        return model_path
    else:
        return "poltextlab/xlm-roberta-large-pooled-cap"

#@spaces.GPU
def predict(text, model_id, tokenizer_id):
    device = torch.device("cpu")
    model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", offload_folder="offload", token=HF_TOKEN).to(device)
    tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)

    inputs = tokenizer(text,
                       max_length=256,
                       truncation=True,
                       padding="do_not_pad",
                       return_tensors="pt").to(device)
    model.eval()

    with torch.no_grad():
        logits = model(**inputs).logits

    probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
    output_pred = {f"[{CAP_NUM_DICT[i]}] {CAP_LABEL_NAMES[CAP_NUM_DICT[i]]}": probs[i] for i in np.argsort(probs)[::-1]}
    output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
    return output_pred, output_info

def predict_cap(text, language, domain):
    print(domain) # debug statement
    domain = domains[domain]
    model_id = build_huggingface_path(language, domain)
    tokenizer_id = "xlm-roberta-large"
    
    if is_disk_full():
        os.system('rm -rf /data/models*')
        os.system('rm -r ~/.cache/huggingface/hub')
        
    return predict(text, model_id, tokenizer_id)

demo = gr.Interface(
    title="CAP Babel Demo",
    fn=predict_cap,
    inputs=[gr.Textbox(lines=6, label="Input"),
            gr.Dropdown(languages, label="Language", value=languages[-1]),
            gr.Dropdown(domains.keys(), label="Domain", value=list(domains.values())[0])],
    outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])