Spaces:
Running
Running
File size: 5,198 Bytes
1130e24 04f8f8b 1130e24 70be539 1130e24 70be539 1130e24 67fd23e b2b1d1f 67fd23e a1eb2dd 67fd23e 1130e24 70be539 1130e24 70be539 1130e24 70be539 1130e24 70be539 1130e24 70be539 1130e24 70be539 5f6b004 90fa7ec 5f6b004 90fa7ec 5f6b004 70be539 d6c2bce 7d912ec 70be539 5f6b004 70be539 a1eb2dd 70be539 1130e24 70be539 1130e24 70be539 90fa7ec 70be539 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import gradio as gr
import os
import torch
import numpy as np
import pandas as pd
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
import torch.nn.functional as F
from huggingface_hub import HfApi
from collections import defaultdict
from label_dicts import (CAP_MEDIA_NUM_DICT, CAP_MEDIA_LABEL_NAMES,
CAP_MIN_NUM_DICT, CAP_MIN_LABEL_NAMES)
from .utils import is_disk_full
HF_TOKEN = os.environ["hf_read"]
languages = [
"Multilingual",
]
domains = {
"media": "media"
}
CAP_MEDIA_CODES = list(CAP_MEDIA_NUM_DICT.values())
CAP_MIN_CODES = list(CAP_MIN_NUM_DICT.values())
major_index_to_id = {i: code for i, code in enumerate(CAP_MEDIA_CODES)}
minor_id_to_index = {code: i for i, code in enumerate(CAP_MIN_CODES)}
minor_index_to_id = {i: code for i, code in enumerate(CAP_MIN_CODES)}
major_to_minor_map = defaultdict(list)
for code in CAP_MIN_CODES:
major_id = int(str(code)[:-2])
major_to_minor_map[major_id].append(code)
major_to_minor_map = dict(major_to_minor_map)
def normalize_probs(probs: dict):
min_val = min(probs.values())
max_val = max(probs.values())
range_val = max_val - min_val
if range_val == 0:
return {k: 1.0 for k in probs}
return {k: (v - min_val) / range_val for k, v in probs.items()}
def check_huggingface_path(checkpoint_path: str):
try:
hf_api = HfApi(token=HF_TOKEN)
hf_api.model_info(checkpoint_path, token=HF_TOKEN)
return True
except:
return False
def build_huggingface_path(language: str, domain: str):
return ("poltextlab/xlm-roberta-large-pooled-cap-media", "poltextlab/xlm-roberta-large-pooled-cap-minor-v3")
def predict(text, major_model_id, minor_model_id, tokenizer_id, HF_TOKEN=None):
device = torch.device("cpu")
# Load major and minor models + tokenizer
major_model = AutoModelForSequenceClassification.from_pretrained(
major_model_id,
low_cpu_mem_usage=True,
device_map="auto",
offload_folder="offload",
token=HF_TOKEN
).to(device)
minor_model = AutoModelForSequenceClassification.from_pretrained(
minor_model_id,
low_cpu_mem_usage=True,
device_map="auto",
offload_folder="offload",
token=HF_TOKEN
).to(device)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
# Tokenize input
inputs = tokenizer(text, max_length=256, truncation=True, padding="do_not_pad", return_tensors="pt").to(device)
# Predict major topic
major_model.eval()
with torch.no_grad():
major_logits = major_model(**inputs).logits
major_probs = F.softmax(major_logits, dim=-1)
major_probs_np = major_probs.cpu().numpy().flatten()
top_major_index = int(np.argmax(major_probs_np))
top_major_id = major_index_to_id[top_major_index]
# Default: show major topic predictions
print(major_probs_np) # debug
filtered_probs = {
i: float(major_probs_np[i])
for i in np.argsort(major_probs_np)[::-1]
}
print(filtered_probs) # debug
filtered_probs = normalize_probs(filtered_probs)
print(filtered_probs) # debug
output_pred = {
f"[{major_index_to_id[k]}] {CAP_MEDIA_LABEL_NAMES[k]}": v
for k, v in sorted(filtered_probs.items(), key=lambda item: item[1], reverse=True)
}
print(output_pred) # debug
# If eligible for minor prediction
if top_major_id in major_to_minor_map:
valid_minor_ids = major_to_minor_map[top_major_id]
minor_model.eval()
with torch.no_grad():
minor_logits = minor_model(**inputs).logits
minor_probs = F.softmax(minor_logits, dim=-1)
# Restrict to valid minor codes
valid_indices = [minor_id_to_index[mid] for mid in valid_minor_ids if mid in minor_id_to_index]
filtered_probs = {minor_index_to_id[i]: float(minor_probs[0][i]) for i in valid_indices}
filtered_probs = normalize_probs(filtered_probs)
output_pred = {
f"[{k}] {CAP_MIN_LABEL_NAMES[k]}": v
for k, v in sorted(filtered_probs.items(), key=lambda item: item[1], reverse=True)
}
output_info = f'<p style="text-align: center; display: block">Prediction used <a href="https://huggingface.co/{major_model_id}">{major_model_id}</a> and <a href="https://huggingface.co/{minor_model_id}">{minor_model_id}</a>.</p>'
return output_pred, output_info
def predict_cap(text, language, domain):
domain = domains[domain]
major_model_id, minor_model_id = build_huggingface_path(language, domain)
tokenizer_id = "xlm-roberta-large"
if is_disk_full():
os.system('rm -rf /data/models*')
os.system('rm -r ~/.cache/huggingface/hub')
return predict(text, major_model_id, minor_model_id, tokenizer_id)
demo = gr.Interface(
title="CAP Media/Minor Topics Babel Demo",
fn=predict_cap,
inputs=[gr.Textbox(lines=6, label="Input"),
gr.Dropdown(languages, label="Language"),
gr.Dropdown(domains.keys(), label="Domain")],
outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])
|