Spaces:
Running
Running
import gradio as gr | |
import os | |
import torch | |
import numpy as np | |
import pandas as pd | |
from transformers import AutoModelForSequenceClassification | |
from transformers import AutoTokenizer | |
import torch.nn.functional as F | |
from huggingface_hub import HfApi | |
from collections import defaultdict | |
from label_dicts import (CAP_MEDIA_NUM_DICT, CAP_MEDIA_LABEL_NAMES, | |
CAP_MIN_NUM_DICT, CAP_MIN_LABEL_NAMES) | |
from .utils import is_disk_full | |
HF_TOKEN = os.environ["hf_read"] | |
languages = [ | |
"Multilingual", | |
] | |
domains = { | |
"media": "media" | |
} | |
CAP_MEDIA_CODES = list(CAP_MEDIA_NUM_DICT.values()) | |
CAP_MIN_CODES = list(CAP_MIN_NUM_DICT.values()) | |
major_index_to_id = {i: code for i, code in enumerate(CAP_MEDIA_CODES)} | |
minor_id_to_index = {code: i for i, code in enumerate(CAP_MIN_CODES)} | |
minor_index_to_id = {i: code for i, code in enumerate(CAP_MIN_CODES)} | |
major_to_minor_map = defaultdict(list) | |
for code in CAP_MIN_CODES: | |
major_id = int(str(code)[:-2]) | |
major_to_minor_map[major_id].append(code) | |
major_to_minor_map = dict(major_to_minor_map) | |
def normalize_probs(probs: dict): | |
min_val = min(probs.values()) | |
max_val = max(probs.values()) | |
range_val = max_val - min_val | |
if range_val == 0: | |
return {k: 1.0 for k in probs} | |
return {k: (v - min_val) / range_val for k, v in probs.items()} | |
def check_huggingface_path(checkpoint_path: str): | |
try: | |
hf_api = HfApi(token=HF_TOKEN) | |
hf_api.model_info(checkpoint_path, token=HF_TOKEN) | |
return True | |
except: | |
return False | |
def build_huggingface_path(language: str, domain: str): | |
return ("poltextlab/xlm-roberta-large-pooled-cap-media", "poltextlab/xlm-roberta-large-pooled-cap-minor-v3") | |
def predict(text, major_model_id, minor_model_id, tokenizer_id, HF_TOKEN=None): | |
device = torch.device("cpu") | |
# Load major and minor models + tokenizer | |
major_model = AutoModelForSequenceClassification.from_pretrained( | |
major_model_id, | |
low_cpu_mem_usage=True, | |
device_map="auto", | |
offload_folder="offload", | |
token=HF_TOKEN | |
).to(device) | |
minor_model = AutoModelForSequenceClassification.from_pretrained( | |
minor_model_id, | |
low_cpu_mem_usage=True, | |
device_map="auto", | |
offload_folder="offload", | |
token=HF_TOKEN | |
).to(device) | |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id) | |
# Tokenize input | |
inputs = tokenizer(text, max_length=256, truncation=True, padding="do_not_pad", return_tensors="pt").to(device) | |
# Predict major topic | |
major_model.eval() | |
with torch.no_grad(): | |
major_logits = major_model(**inputs).logits | |
major_probs = F.softmax(major_logits, dim=-1) | |
major_probs_np = major_probs.cpu().numpy().flatten() | |
top_major_index = int(np.argmax(major_probs_np)) | |
top_major_id = major_index_to_id[top_major_index] | |
# Default: show major topic predictions | |
print(major_probs_np) # debug | |
filtered_probs = { | |
i: float(major_probs_np[i]) | |
for i in np.argsort(major_probs_np)[::-1] | |
} | |
print(filtered_probs) # debug | |
filtered_probs = normalize_probs(filtered_probs) | |
print(filtered_probs) # debug | |
output_pred = { | |
f"[{major_index_to_id[k]}] {CAP_MEDIA_LABEL_NAMES[k]}": v | |
for k, v in sorted(filtered_probs.items(), key=lambda item: item[1], reverse=True) | |
} | |
print(output_pred) # debug | |
# If eligible for minor prediction | |
if top_major_id in major_to_minor_map: | |
valid_minor_ids = major_to_minor_map[top_major_id] | |
minor_model.eval() | |
with torch.no_grad(): | |
minor_logits = minor_model(**inputs).logits | |
minor_probs = F.softmax(minor_logits, dim=-1) | |
# Restrict to valid minor codes | |
valid_indices = [minor_id_to_index[mid] for mid in valid_minor_ids if mid in minor_id_to_index] | |
filtered_probs = {minor_index_to_id[i]: float(minor_probs[0][i]) for i in valid_indices} | |
filtered_probs = normalize_probs(filtered_probs) | |
output_pred = { | |
f"[{k}] {CAP_MIN_LABEL_NAMES[k]}": v | |
for k, v in sorted(filtered_probs.items(), key=lambda item: item[1], reverse=True) | |
} | |
output_info = f'<p style="text-align: center; display: block">Prediction used <a href="https://huggingface.co/{major_model_id}">{major_model_id}</a> and <a href="https://huggingface.co/{minor_model_id}">{minor_model_id}</a>.</p>' | |
return output_pred, output_info | |
def predict_cap(text, language, domain): | |
domain = domains[domain] | |
major_model_id, minor_model_id = build_huggingface_path(language, domain) | |
tokenizer_id = "xlm-roberta-large" | |
if is_disk_full(): | |
os.system('rm -rf /data/models*') | |
os.system('rm -r ~/.cache/huggingface/hub') | |
return predict(text, major_model_id, minor_model_id, tokenizer_id) | |
demo = gr.Interface( | |
title="CAP Media/Minor Topics Babel Demo", | |
fn=predict_cap, | |
inputs=[gr.Textbox(lines=6, label="Input"), | |
gr.Dropdown(languages, label="Language"), | |
gr.Dropdown(domains.keys(), label="Domain")], | |
outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()]) | |