babel_machine / interfaces /cap_minor_media.py
kovacsvi
JIT tracing
fb1a253
import gradio as gr
import spaces
import os
import torch
import numpy as np
import pandas as pd
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
import torch.nn.functional as F
from huggingface_hub import HfApi
from collections import defaultdict
from label_dicts import (CAP_MEDIA_NUM_DICT, CAP_MEDIA_LABEL_NAMES,
CAP_MIN_NUM_DICT, CAP_MIN_LABEL_NAMES,
CAP_MIN_MEDIA_NUM_DICT)
from .utils import is_disk_full, release_model
HF_TOKEN = os.environ["hf_read"]
languages = [
"Multilingual",
]
domains = {
"media": "media"
}
NUM_TOP_CLASSES = 5
CAP_MEDIA_CODES = list(CAP_MEDIA_NUM_DICT.values())
CAP_MIN_CODES = list(CAP_MIN_NUM_DICT.values())
major_index_to_id = {i: code for i, code in enumerate(CAP_MEDIA_CODES)}
minor_id_to_index = {code: i for i, code in enumerate(CAP_MIN_CODES)}
minor_index_to_id = {i: code for i, code in enumerate(CAP_MIN_CODES)}
major_to_minor_map = defaultdict(list)
for code in CAP_MIN_CODES:
major_id = int(str(code)[:-2])
major_to_minor_map[major_id].append(code)
major_to_minor_map = dict(major_to_minor_map)
def normalize_probs(probs: dict) -> dict:
total = sum(probs.values())
return {k: v / total for k, v in probs.items()}
def check_huggingface_path(checkpoint_path: str):
try:
hf_api = HfApi(token=HF_TOKEN)
hf_api.model_info(checkpoint_path, token=HF_TOKEN)
return True
except:
return False
def build_huggingface_path(language: str, domain: str, hierarchical: bool):
if hierarchical:
return ("poltextlab/xlm-roberta-large-pooled-cap-media", "poltextlab/xlm-roberta-large-pooled-cap-minor-v3")
else:
return "poltextlab/xlm-roberta-large-pooled-cap-media-minor"
#@spaces.GPU(duration=30)
def predict(text, major_model_id, minor_model_id, tokenizer_id, HF_TOKEN=None):
device = torch.device("cpu")
# Load major and minor models + tokenizer
major_model = AutoModelForSequenceClassification.from_pretrained(
major_model_id,
low_cpu_mem_usage=True,
device_map="auto",
offload_folder="offload",
token=HF_TOKEN
).to(device)
minor_model = AutoModelForSequenceClassification.from_pretrained(
minor_model_id,
low_cpu_mem_usage=True,
device_map="auto",
offload_folder="offload",
token=HF_TOKEN
).to(device)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
# Tokenize input
inputs = tokenizer(text, max_length=256, truncation=True, padding="do_not_pad", return_tensors="pt").to(device)
# Predict major topic
major_model.eval()
with torch.no_grad():
major_logits = major_model(**inputs).logits
major_probs = F.softmax(major_logits, dim=-1)
major_probs_np = major_probs.cpu().numpy().flatten()
top_major_index = int(np.argmax(major_probs_np))
top_major_id = major_index_to_id[top_major_index]
# Default: show major topic predictions
filtered_probs = {
i: float(major_probs_np[i])
for i in np.argsort(major_probs_np)[::-1]
}
filtered_probs = normalize_probs(filtered_probs)
output_pred = {
f"[{major_index_to_id[k]}] {CAP_MEDIA_LABEL_NAMES[major_index_to_id[k]]}": v
for k, v in sorted(filtered_probs.items(), key=lambda item: item[1], reverse=True)
}
# If eligible for minor prediction
if top_major_id in major_to_minor_map:
valid_minor_ids = major_to_minor_map[top_major_id]
minor_model.eval()
with torch.no_grad():
minor_logits = minor_model(**inputs).logits
minor_probs = F.softmax(minor_logits, dim=-1)
release_model(major_model, major_model_id)
release_model(minor_model, minor_model_id)
print(minor_probs) # debug
# Restrict to valid minor codes
valid_indices = [minor_id_to_index[mid] for mid in valid_minor_ids if mid in minor_id_to_index]
filtered_probs = {minor_index_to_id[i]: float(minor_probs[0][i]) for i in valid_indices}
print(filtered_probs) # debug
filtered_probs = normalize_probs(filtered_probs)
print(filtered_probs) # debug
output_pred = {
f"[{top_major_id}] {CAP_MEDIA_LABEL_NAMES[top_major_id]} [{k}] {CAP_MIN_LABEL_NAMES[k]}": v
for k, v in sorted(filtered_probs.items(), key=lambda item: item[1], reverse=True)
}
output_info = f'<p style="text-align: center; display: block">Prediction used <a href="https://huggingface.co/{major_model_id}">{major_model_id}</a> and <a href="https://huggingface.co/{minor_model_id}">{minor_model_id}</a>.</p>'
interpretation_info = """
## How to Interpret These Values (Hierarchical Classification)
This method returns either:
- A list of **major (media) topic confidences**, or
- A list of **minor topic confidences**.
In the case of minor topics, the values are the confidences for minor topics **within a given major topic**, and they are **normalized to sum to 1**.
"""
return interpretation_info, output_pred, output_info
def predict_flat(text, model_id, tokenizer_id, HF_TOKEN=None):
device = torch.device("cpu")
# Load JIT-traced model
jit_model_path = f"/data/jit_models/{model_id.replace('/', '_')}.pt"
model = torch.jit.load(jit_model_path).to(device)
model.eval()
# Load tokenizer (still regular HF)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
# Tokenize input
inputs = tokenizer(
text,
max_length=256,
truncation=True,
padding="do_not_pad",
return_tensors="pt"
)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
output = model(inputs["input_ids"], inputs["attention_mask"])
print(output) # debug
logits = output["logits"]
release_model(model, model_id)
probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
top_indices = np.argsort(probs)[::-1][:10]
CAP_MIN_MEDIA_LABEL_NAMES = CAP_MEDIA_LABEL_NAMES | CAP_MIN_LABEL_NAMES
output_pred = {}
for i in top_indices:
code = CAP_MIN_MEDIA_NUM_DICT[i]
prob = probs[i]
if code in CAP_MEDIA_LABEL_NAMES:
# Media (major) topic
label = CAP_MEDIA_LABEL_NAMES[code]
display = f"[{code}] {label}"
else:
# Minor topic
major_code = code // 100
major_label = CAP_MEDIA_LABEL_NAMES[major_code]
minor_label = CAP_MIN_LABEL_NAMES[code]
display = f"[{major_code}] {major_label} [{code}] {minor_label}"
output_pred[display] = prob
interpretation_info = """
## How to Interpret These Values (Flat Classification)
This method returns predictions made by a single model. Both media codes and minor topics may appear in the output list. **Only the top 10 most confident labels are displayed**.
"""
output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
return interpretation_info, output_pred, output_info
def predict_cap(tmp, method, text, language, domain):
if is_disk_full():
os.system('rm -rf /data/models*')
os.system('rm -r ~/.cache/huggingface/hub')
domain = domains[domain]
if method == "Hierarchical Classification":
major_model_id, minor_model_id = build_huggingface_path(language, domain, True)
tokenizer_id = "xlm-roberta-large"
return predict(text, major_model_id, minor_model_id, tokenizer_id)
else:
model_id = build_huggingface_path(language, domain, False)
tokenizer_id = "xlm-roberta-large"
return predict_flat(text, model_id, tokenizer_id)
description = """
You can choose between two approaches for making predictions:
**1. Hierarchical Classification**
First, the model predicts a **major topic**. Then, a second model selects the most probable **subtopic** from within that major topic's category.
**2. Flat Classification (single model)**
A single model directly predicts the most relevant label from all available classes (both media and minor topics).
"""
demo = gr.Interface(
title="CAP Media/Minor Topics Babel Demo",
fn=predict_cap,
inputs=[gr.Markdown(description),
gr.Radio(
choices=["Hierarchical Classification", "Flat Classification"],
label="Prediction Mode",
value="Hierarchical Classification"
),
gr.Textbox(lines=6, label="Input"),
gr.Dropdown(languages, label="Language", value=languages[0]),
gr.Dropdown(domains.keys(), label="Domain", value=list(domains.keys())[0])],
outputs=[gr.Markdown(), gr.Label(label="Output"), gr.Markdown()])