Spaces:
Running
Running
import gradio as gr | |
import os | |
import torch | |
import numpy as np | |
from transformers import AutoModelForSequenceClassification | |
from transformers import AutoTokenizer | |
from huggingface_hub import HfApi | |
HF_TOKEN = os.environ["hf_read"] | |
languages = [ | |
"English" | |
] | |
from label_dicts import ONTOLISST_LABEL_NAMES | |
from .utils import is_disk_full, release_model | |
# --- DEBUG --- | |
import shutil | |
def convert_size(size): | |
for unit in ['B', 'KB', 'MB', 'GB', 'TB', 'PB']: | |
if size < 1024: | |
return f"{size:.2f} {unit}" | |
size /= 1024 | |
def get_disk_space(path="/"): | |
total, used, free = shutil.disk_usage(path) | |
return { | |
"Total": convert_size(total), | |
"Used": convert_size(used), | |
"Free": convert_size(free) | |
} | |
# --- | |
def build_huggingface_path(language: str): | |
return "poltextlab/xlm-roberta-large_ontolisst_v1" | |
def predict(text, model_id, tokenizer_id): | |
device = torch.device("cpu") | |
# Load JIT-traced model | |
jit_model_path = f"/data/jit_models/{model_id.replace('/', '_')}.pt" | |
model = torch.jit.load(jit_model_path).to(device) | |
model.eval() | |
# Load tokenizer (still regular HF) | |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id) | |
# Tokenize input | |
inputs = tokenizer( | |
text, | |
max_length=256, | |
truncation=True, | |
padding="do_not_pad", | |
return_tensors="pt" | |
) | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
with torch.no_grad(): | |
output = model(inputs["input_ids"], inputs["attention_mask"]) | |
print(output) # debug | |
logits = output["logits"] | |
release_model(model, model_id) | |
probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten() | |
predicted_class_id = probs.argmax() | |
predicted_class_id = {4: 2, 5: 1}.get(predicted_class_id, 0) | |
output_pred = ONTOLISST_LABEL_NAMES.get(predicted_class_id, predicted_class_id) | |
output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>' | |
return output_pred, output_info | |
def predict_cap(text, language): | |
model_id = build_huggingface_path(language) | |
tokenizer_id = "xlm-roberta-large" | |
if is_disk_full(): | |
os.system('rm -rf /data/models*') | |
os.system('rm -r ~/.cache/huggingface/hub') | |
return predict(text, model_id, tokenizer_id) | |
demo = gr.Interface( | |
title="ONTOLISST Babel Demo", | |
fn=predict_cap, | |
inputs=[gr.Textbox(lines=6, label="Input"), | |
gr.Dropdown(languages, label="Language", value=languages[0])], | |
outputs=[gr.Label(num_top_classes=3, label="Output"), gr.Markdown()]) | |