Spaces:
Running
Running
File size: 3,742 Bytes
097081a 9b56ad1 3f106f4 9b56ad1 3f106f4 9b56ad1 097081a 9b56ad1 3f106f4 097081a 3f106f4 097081a 3f106f4 9b56ad1 3f106f4 9b56ad1 097081a 9b56ad1 097081a 9b56ad1 3f106f4 9b56ad1 3f106f4 9b56ad1 3f106f4 9b56ad1 3f106f4 9b56ad1 3f106f4 9b56ad1 3f106f4 9b56ad1 3f106f4 9b56ad1 3f106f4 9b56ad1 3f106f4 9b56ad1 3f106f4 9b56ad1 3f106f4 9b56ad1 097081a 3f106f4 9b56ad1 3f106f4 9b56ad1 3f106f4 9b56ad1 3f106f4 9b56ad1 3f106f4 9b56ad1 3f106f4 9b56ad1 3f106f4 9b56ad1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
import os
import gradio as gr
import fitz # PyMuPDF
import faiss
import numpy as np
from io import BytesIO
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from langchain.text_splitter import RecursiveCharacterTextSplitter
from huggingface_hub import login
# 1. Authenticate HuggingFace
hf_token = os.environ.get("HUGGINGFACE_TOKEN")
if not hf_token:
raise ValueError("β οΈ Please set the HUGGINGFACE_TOKEN environment variable.")
login(token=hf_token)
# 2. Load embedding model
embed_model = SentenceTransformer("BAAI/bge-base-en-v1.5")
# 3. Load LLM (Mistral 7B Instruct with 4-bit quantization)
model_id = "mistralai/Mistral-7B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=hf_token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
load_in_4bit=True,
use_auth_token=hf_token
)
llm = pipeline("text-generation", model=model, tokenizer=tokenizer)
# 4. Globals
index = None
doc_texts = []
# 5. Extract text from uploaded file
def extract_text(file):
text = ""
file_bytes = file.read()
if file.name.endswith(".pdf"):
pdf_stream = BytesIO(file_bytes)
doc = fitz.open(stream=pdf_stream, filetype="pdf")
for page in doc:
text += page.get_text()
elif file.name.endswith(".txt"):
text = file_bytes.decode("utf-8")
else:
return "β Unsupported file type. Only PDF and TXT are allowed."
return text
# 6. Process the file: split text, create embeddings, build FAISS index
def process_file(file):
global index, doc_texts
text = extract_text(file)
if text.startswith("β"):
return text
# Split text
splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=50)
doc_texts = splitter.split_text(text)
# Create embeddings
embeddings = embed_model.encode(doc_texts, convert_to_numpy=True)
# Build FAISS index
dim = embeddings.shape[1]
index = faiss.IndexFlatL2(dim)
index.add(embeddings)
return "β
File processed successfully. You can now ask questions!"
# 7. Generate answer based on question + retrieved context
def generate_answer(question):
global index, doc_texts
if index is None or not doc_texts:
return "β οΈ Please upload and process a file first."
# Embed the question
question_emb = embed_model.encode([question], convert_to_numpy=True)
_, I = index.search(question_emb, k=3)
# Build context
context = "\n".join([doc_texts[i] for i in I[0]])
# Prompt
prompt = f"""[System: You are a helpful assistant. Answer strictly based on the context. Do not hallucinate.]
Context:
{context}
Question: {question}
Answer:"""
# Generate response
response = llm(prompt, max_new_tokens=300, do_sample=True, temperature=0.7)
return response[0]["generated_text"].split("Answer:")[-1].strip()
# 8. Gradio UI
with gr.Blocks(title="π§ RAG Chatbot") as demo:
gr.Markdown("## π Retrieval-Augmented Generation Chatbot\nUpload a `.pdf` or `.txt` and ask questions from the content.")
with gr.Row():
file_input = gr.File(label="π Upload PDF/TXT", file_types=[".pdf", ".txt"])
upload_status = gr.Textbox(label="π₯ Upload Status", interactive=False)
with gr.Row():
question_box = gr.Textbox(label="β Ask a Question", placeholder="Type your question here...")
answer_box = gr.Textbox(label="π¬ Answer", interactive=False)
file_input.change(fn=process_file, inputs=file_input, outputs=upload_status)
question_box.submit(fn=generate_answer, inputs=question_box, outputs=answer_box)
# 9. Launch the app
demo.launch()
|