Spaces:
Running
Running
File size: 3,421 Bytes
097081a 9b56ad1 3f106f4 9b56ad1 3f106f4 9b56ad1 097081a 9b56ad1 2074ed8 097081a 3f106f4 097081a 2074ed8 9b56ad1 2074ed8 9b56ad1 2074ed8 9b56ad1 2074ed8 9b56ad1 2074ed8 9b56ad1 2074ed8 9b56ad1 3f106f4 9b56ad1 3f106f4 9b56ad1 3f106f4 9b56ad1 2074ed8 3f106f4 9b56ad1 2074ed8 9b56ad1 3f106f4 9b56ad1 3f106f4 9b56ad1 2074ed8 9b56ad1 2074ed8 9b56ad1 097081a 3f106f4 9b56ad1 3f106f4 9b56ad1 2074ed8 9b56ad1 3f106f4 9b56ad1 2074ed8 9b56ad1 2074ed8 9b56ad1 2074ed8 9b56ad1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
import os
import gradio as gr
import fitz # PyMuPDF
import faiss
import numpy as np
from io import BytesIO
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from langchain.text_splitter import RecursiveCharacterTextSplitter
from huggingface_hub import login
# Authenticate with Hugging Face
hf_token = os.environ.get("HUGGINGFACE_TOKEN")
if not hf_token:
raise ValueError("β οΈ Please set the HUGGINGFACE_TOKEN environment variable.")
login(token=hf_token)
# Load embedding model
embed_model = SentenceTransformer("BAAI/bge-base-en-v1.5")
# Load Mistral without 4bit quantization (CPU-friendly)
model_id = "mistralai/Mistral-7B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map={"": "cpu"}, # force CPU
torch_dtype="auto", # safe for CPU
token=hf_token
)
llm = pipeline("text-generation", model=model, tokenizer=tokenizer)
# Globals
index = None
doc_texts = []
# Extract text from PDF or TXT
def extract_text(file):
text = ""
file_bytes = file.read()
if file.name.endswith(".pdf"):
pdf_stream = BytesIO(file_bytes)
doc = fitz.open(stream=pdf_stream, filetype="pdf")
for page in doc:
text += page.get_text()
elif file.name.endswith(".txt"):
text = file_bytes.decode("utf-8")
else:
return "β Unsupported file type."
return text
# Process the file, build FAISS index
def process_file(file):
global index, doc_texts
text = extract_text(file)
if text.startswith("β"):
return text
splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=50)
doc_texts = splitter.split_text(text)
embeddings = embed_model.encode(doc_texts, convert_to_numpy=True)
dim = embeddings.shape[1]
index = faiss.IndexFlatL2(dim)
index.add(embeddings)
return "β
File processed! You can now ask questions."
# Generate answer using context + LLM
def generate_answer(question):
global index, doc_texts
if index is None or not doc_texts:
return "β οΈ Please upload and process a file first."
question_emb = embed_model.encode([question], convert_to_numpy=True)
_, I = index.search(question_emb, k=3)
context = "\n".join([doc_texts[i] for i in I[0]])
prompt = f"""[System: You are a helpful assistant. Answer based on the context.]
Context:
{context}
Question: {question}
Answer:"""
response = llm(prompt, max_new_tokens=300, do_sample=True, temperature=0.7)
return response[0]["generated_text"].split("Answer:")[-1].strip()
# Gradio UI
with gr.Blocks(title="RAG Chatbot (CPU Compatible)") as demo:
gr.Markdown("## π Upload PDF/TXT and Ask Questions using Mistral-7B")
with gr.Row():
file_input = gr.File(label="π Upload File (.pdf or .txt)", file_types=[".pdf", ".txt"])
upload_status = gr.Textbox(label="Upload Status", interactive=False)
with gr.Row():
question_box = gr.Textbox(label="β Ask a Question", placeholder="What would you like to know?")
answer_box = gr.Textbox(label="π¬ Answer", interactive=False)
file_input.change(fn=process_file, inputs=file_input, outputs=upload_status)
question_box.submit(fn=generate_answer, inputs=question_box, outputs=answer_box)
demo.launch()
|