File size: 3,194 Bytes
097081a
9b56ad1
3f106f4
9b56ad1
 
3f106f4
 
f1e12d6
9b56ad1
097081a
9b56ad1
2074ed8
097081a
3f106f4
 
097081a
 
2074ed8
9b56ad1
 
f1e12d6
 
 
 
 
 
 
9b56ad1
 
 
f1e12d6
 
3f106f4
f1e12d6
 
 
3f106f4
9b56ad1
 
f1e12d6
 
9b56ad1
2074ed8
3f106f4
9b56ad1
f1e12d6
 
9b56ad1
f1e12d6
9b56ad1
 
 
3f106f4
 
 
 
9b56ad1
 
3f106f4
9b56ad1
f1e12d6
9b56ad1
f1e12d6
9b56ad1
097081a
3f106f4
9b56ad1
 
3f106f4
 
 
9b56ad1
f1e12d6
2074ed8
9b56ad1
 
 
 
f1e12d6
9b56ad1
f1e12d6
 
9b56ad1
2074ed8
f1e12d6
 
9b56ad1
 
f1e12d6
 
9b56ad1
 
f1e12d6
 
9b56ad1
 
f1e12d6
9b56ad1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import os
import gradio as gr
import fitz  # PyMuPDF
import faiss
import numpy as np
from io import BytesIO
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from langchain.text_splitter import RecursiveCharacterTextSplitter
from huggingface_hub import login

# Authenticate with Hugging Face
hf_token = os.environ.get("HUGGINGFACE_TOKEN")
if not hf_token:
    raise ValueError("⚠️ Please set the HUGGINGFACE_TOKEN environment variable.")
login(token=hf_token)

# Load embedding model
embed_model = SentenceTransformer("BAAI/bge-base-en-v1.5")

# βœ… Load FLAN-T5 base (CPU-friendly)
model_id = "google/flan-t5-base"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
llm = pipeline("text2text-generation", model=model, tokenizer=tokenizer)

# Globals
index = None
doc_texts = []

# Extract text from PDF or TXT
def extract_text(file):
    text = ""
    file_bytes = file.read()
    if file.name.endswith(".pdf"):
        pdf_stream = BytesIO(file_bytes)
        doc = fitz.open(stream=pdf_stream, filetype="pdf")
        for page in doc:
            text += page.get_text()
    elif file.name.endswith(".txt"):
        text = file_bytes.decode("utf-8")
    else:
        return "❌ Unsupported file type."
    return text

# Process the file, build FAISS index
def process_file(file):
    global index, doc_texts
    text = extract_text(file)
    if text.startswith("❌"):
        return text

    splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=50)
    doc_texts = splitter.split_text(text)

    embeddings = embed_model.encode(doc_texts, convert_to_numpy=True)
    dim = embeddings.shape[1]
    index = faiss.IndexFlatL2(dim)
    index.add(embeddings)

    return "βœ… File processed! You can now ask questions."

# Generate answer using context + LLM
def generate_answer(question):
    global index, doc_texts
    if index is None or not doc_texts:
        return "⚠️ Please upload and process a file first."

    question_emb = embed_model.encode([question], convert_to_numpy=True)
    _, I = index.search(question_emb, k=3)
    context = "\n".join([doc_texts[i] for i in I[0]])

    prompt = f"""Use the following context to answer the question.

Context:
{context}

Question: {question}
"""

    response = llm(prompt, max_new_tokens=300)
    return response[0]["generated_text"].strip()

# Gradio UI
with gr.Blocks(title="RAG Chatbot (Fast & CPU Compatible)") as demo:
    gr.Markdown("## πŸ“š Upload PDF/TXT and Ask Questions using FLAN-T5")

    with gr.Row():
        file_input = gr.File(label="πŸ“ Upload File (.pdf or .txt)", file_types=[".pdf", ".txt"])
        upload_status = gr.Textbox(label="Upload Status", interactive=False)

    with gr.Row():
        question_box = gr.Textbox(label="❓ Ask a Question", placeholder="What would you like to know?")
        answer_box = gr.Textbox(label="πŸ’¬ Answer", interactive=False)

    file_input.change(fn=process_file, inputs=file_input, outputs=upload_status)
    question_box.submit(fn=generate_answer, inputs=question_box, outputs=answer_box)

demo.launch()