Spaces:
Runtime error
Runtime error
File size: 3,144 Bytes
8ae2ea0 7f0ac64 8ae2ea0 7f0ac64 8ae2ea0 8b2b3e8 8ae2ea0 7f0ac64 8ae2ea0 7f0ac64 8ae2ea0 7f0ac64 8ae2ea0 7f0ac64 8ae2ea0 7f0ac64 8ae2ea0 7f0ac64 8ae2ea0 7f0ac64 8b2b3e8 7f0ac64 8ae2ea0 7f0ac64 8ae2ea0 7f0ac64 8ae2ea0 7f0ac64 8ae2ea0 7f0ac64 8ae2ea0 68d7ab1 7f0ac64 8ae2ea0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import gradio as gr
from ultralytics import YOLO
import cv2
import numpy as np
import torch
import wikipedia
from PIL import Image
import pandas as pd
import os
import uuid
from datetime import datetime
from h3 import h3
# Initialize models
model = YOLO("yolov8n.pt") # You can change this to a fine-tuned model
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS_small")
midas.to("cpu").eval()
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms").small_transform
# CSV path
csv_file = "tree_measurements.csv"
if not os.path.exists(csv_file):
pd.DataFrame(columns=[
"Timestamp", "Latitude", "Longitude", "H3_Index",
"Estimated_Height", "Species", "Image_File"
]).to_csv(csv_file, index=False)
# Convert lat/lon to H3 index
def latlon_to_h3(lat, lon, resolution=9):
return h3.geo_to_h3(lat, lon, resolution)
# Main processing function
def process_tree_image(image, latitude, longitude):
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
img_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# Object detection
results = model(img_cv)
detections = results[0].boxes.data.cpu().numpy()
if len(detections) == 0:
return "No tree detected", image
# Crop the first detected tree
x1, y1, x2, y2, conf, cls = detections[0]
tree_crop = img_cv[int(y1):int(y2), int(x1):int(x2)]
# Depth estimation
input_tensor = midas_transforms(Image.fromarray(cv2.cvtColor(tree_crop, cv2.COLOR_BGR2RGB))).unsqueeze(0)
with torch.no_grad():
depth = midas(input_tensor).squeeze().cpu().numpy()
approx_height = round(np.max(depth) - np.min(depth), 2)
# Get H3 location index
h3_index = latlon_to_h3(latitude, longitude)
# Wikipedia species info
try:
species_guess = wikipedia.summary("tree", sentences=1)
except:
species_guess = "Could not retrieve species info"
# Save image with unique name
image_id = f"tree_{uuid.uuid4().hex[:8]}.png"
image.save(image_id)
# Append to CSV
new_data = pd.DataFrame([{
"Timestamp": timestamp,
"Latitude": latitude,
"Longitude": longitude,
"H3_Index": h3_index,
"Estimated_Height": approx_height,
"Species": species_guess,
"Image_File": image_id
}])
new_data.to_csv(csv_file, mode='a', index=False, header=False)
return (
f"π Estimated Tree Height: {approx_height} meters\n"
f"π H3 Location Index: {h3_index}\n"
f"πΏ Species Info: {species_guess}",
image
)
# Gradio UI
interface = gr.Interface(
fn=process_tree_image,
inputs=[
gr.Image(type="pil", label="πΈ Capture Tree Image"),
gr.Number(label="π Latitude"),
gr.Number(label="π Longitude")
],
outputs=[
gr.Textbox(label="π Tree Info"),
gr.Image(label="πΌοΈ Captured Image")
],
title="π³ Tree Height & Species Estimator",
description="Use your webcam or upload an image of a tree. Enter your GPS location to get height, species info, and H3 geolocation. All data is saved to CSV."
)
interface.launch()
|