Spaces:
Runtime error
Runtime error
File size: 11,766 Bytes
8ae2ea0 a261c62 aa4f4c1 8ae2ea0 aa4f4c1 a261c62 aa4f4c1 0fa81a3 a261c62 aa4f4c1 a261c62 aa4f4c1 a261c62 aa4f4c1 a261c62 aa4f4c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import gradio as gr
import torch
import cv2
import numpy as np
import requests
import json
from PIL import Image
import transformers
from transformers import pipeline, AutoImageProcessor, AutoModelForImageClassification
import wikipedia
import folium
from geopy.geocoders import Nominatim
import base64
from io import BytesIO
import tempfile
import os
class TreeAnalyzer:
def __init__(self):
self.setup_models()
self.geolocator = Nominatim(user_agent="tree_analyzer")
def setup_models(self):
"""Initialize all required models"""
print("Loading models...")
# Load MiDaS model for depth estimation
try:
self.midas = torch.hub.load('intel-isl/MiDaS', 'MiDaS_small')
self.midas.eval()
self.midas_transforms = torch.hub.load('intel-isl/MiDaS', 'transforms')
self.transform = self.midas_transforms.small_transform
print("β MiDaS model loaded successfully")
except Exception as e:
print(f"Error loading MiDaS: {e}")
self.midas = None
# Load plant classification model
try:
self.plant_classifier = pipeline(
"image-classification",
model="microsoft/resnet-50",
return_top_k=3
)
print("β Plant classifier loaded successfully")
except Exception as e:
print(f"Error loading plant classifier: {e}")
# Fallback to a more specific plant model if available
try:
self.plant_classifier = pipeline(
"image-classification",
model="google/vit-base-patch16-224",
return_top_k=3
)
print("β Fallback classifier loaded successfully")
except:
self.plant_classifier = None
print("β Could not load plant classifier")
def estimate_tree_height(self, image, known_object_height=1.7):
"""
Estimate tree height using MiDaS depth estimation
known_object_height: assumed height of reference object (person = 1.7m)
"""
if self.midas is None:
return "MiDaS model not available", None
try:
# Convert PIL to OpenCV format
img_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# Prepare image for MiDaS
input_batch = self.transform(img_cv).to(torch.float32)
# Generate depth map
with torch.no_grad():
prediction = self.midas(input_batch)
prediction = torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=img_cv.shape[:2],
mode="bicubic",
align_corners=False,
).squeeze()
# Convert to numpy
depth_map = prediction.cpu().numpy()
# Normalize depth map for visualization
depth_map_normalized = cv2.normalize(depth_map, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
depth_map_colored = cv2.applyColorMap(depth_map_normalized, cv2.COLORMAP_PLASMA)
# Simple height estimation (this is a simplified approach)
# In reality, you'd need camera calibration and more sophisticated methods
height, width = depth_map.shape
# Assume tree is in the center-upper portion of the image
tree_region = depth_map[int(height*0.1):int(height*0.8), int(width*0.3):int(width*0.7)]
# Calculate relative height based on depth variations
depth_range = np.max(tree_region) - np.min(tree_region)
# Rough estimation: scale based on depth range and image dimensions
estimated_height = (depth_range / np.max(depth_map)) * height * 0.02 # Scaling factor
estimated_height = max(2.0, min(50.0, estimated_height)) # Clamp between 2-50 meters
return f"Estimated height: {estimated_height:.1f} meters", depth_map_colored
except Exception as e:
return f"Error in height estimation: {str(e)}", None
def identify_tree_species(self, image):
"""Identify tree species using image classification"""
if self.plant_classifier is None:
return "Plant classifier not available", []
try:
# Get predictions
predictions = self.plant_classifier(image)
# Filter for tree-related predictions
tree_keywords = ['tree', 'oak', 'pine', 'maple', 'birch', 'cedar', 'fir', 'palm', 'willow', 'cherry', 'apple']
tree_predictions = []
for pred in predictions:
label = pred['label'].lower()
if any(keyword in label for keyword in tree_keywords):
tree_predictions.append(pred)
if not tree_predictions:
tree_predictions = predictions[:2] # Take top 2 if no tree-specific matches
# Get Wikipedia information for top prediction
species_info = []
for pred in tree_predictions[:2]:
try:
# Search Wikipedia
wiki_results = wikipedia.search(pred['label'] + " tree", results=1)
if wiki_results:
page = wikipedia.page(wiki_results[0])
summary = wikipedia.summary(wiki_results[0], sentences=2)
species_info.append({
'species': pred['label'],
'confidence': pred['score'],
'wiki_title': page.title,
'summary': summary,
'url': page.url
})
except:
species_info.append({
'species': pred['label'],
'confidence': pred['score'],
'wiki_title': 'Not found',
'summary': 'No Wikipedia information available',
'url': None
})
return "Species identified successfully", species_info
except Exception as e:
return f"Error in species identification: {str(e)}", []
def get_location_info(self, latitude, longitude):
"""Get location information from coordinates"""
if latitude is None or longitude is None:
return "Location not provided", None
try:
location = self.geolocator.reverse(f"{latitude}, {longitude}")
# Create a map
m = folium.Map(location=[latitude, longitude], zoom_start=15)
folium.Marker(
[latitude, longitude],
popup=f"Tree Location<br>Lat: {latitude:.6f}<br>Lon: {longitude:.6f}",
tooltip="Tree Location"
).add_to(m)
# Save map to temporary file
map_file = tempfile.NamedTemporaryFile(delete=False, suffix='.html')
m.save(map_file.name)
address = location.address if location else "Address not found"
return f"Location: {address}", map_file.name
except Exception as e:
return f"Error getting location info: {str(e)}", None
def analyze_tree(image, latitude, longitude):
"""Main function to analyze tree from image and location"""
if image is None:
return "Please upload an image", "", "", "", None
analyzer = TreeAnalyzer()
# Analyze height
height_result, depth_map = analyzer.estimate_tree_height(image)
# Identify species
species_result, species_info = analyzer.identify_tree_species(image)
# Get location info
location_result, map_file = analyzer.get_location_info(latitude, longitude)
# Format species information
species_text = ""
if species_info:
for info in species_info:
species_text += f"**{info['species']}** (Confidence: {info['confidence']:.2f})\n"
species_text += f"*{info['summary']}*\n"
if info['url']:
species_text += f"[Wikipedia Link]({info['url']})\n"
species_text += "\n"
# Return results
return (
height_result,
species_result,
species_text,
location_result,
map_file
)
# Create Gradio interface
def create_interface():
with gr.Blocks(title="Tree Analysis App", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π³ Tree Analysis App
Upload an image of a tree and optionally provide GPS coordinates to get:
- **Tree height estimation** using MiDaS depth estimation
- **Species identification** with Wikipedia information
- **Location mapping** of where the tree was captured
""")
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="pil", label="Upload Tree Image")
with gr.Row():
latitude_input = gr.Number(
label="Latitude (optional)",
placeholder="e.g., 40.7128",
info="GPS latitude coordinate"
)
longitude_input = gr.Number(
label="Longitude (optional)",
placeholder="e.g., -74.0060",
info="GPS longitude coordinate"
)
analyze_btn = gr.Button("π Analyze Tree", variant="primary")
with gr.Column(scale=2):
with gr.Tab("Results"):
height_output = gr.Textbox(label="Height Estimation", lines=2)
species_status = gr.Textbox(label="Species Identification Status", lines=1)
species_output = gr.Markdown(label="Species Information")
location_output = gr.Textbox(label="Location Information", lines=2)
with gr.Tab("Location Map"):
map_output = gr.HTML(label="Location Map")
# Connect the analyze button
analyze_btn.click(
fn=analyze_tree,
inputs=[image_input, latitude_input, longitude_input],
outputs=[height_output, species_status, species_output, location_output, map_output]
)
# Example section
gr.Markdown("""
## π± Usage Tips:
1. **Take a clear photo** of the tree with good lighting
2. **Include reference objects** (like people) for better height estimation
3. **Enable GPS** on your phone and note the coordinates
4. **Upload the image** and enter GPS coordinates if available
5. **Click Analyze** to get comprehensive tree information
## π Sharing:
This app generates a shareable link that you can send to others!
""")
return demo
# Main execution
if __name__ == "__main__":
# Create and launch the interface
demo = create_interface()
# Launch with sharing enabled to generate a public link
demo.launch(
share=True, # This creates a shareable public link
server_name="0.0.0.0",
server_port=7860,
show_error=True
)
|