Spaces:
Runtime error
Runtime error
File size: 2,285 Bytes
8ae2ea0 8b2b3e8 8ae2ea0 8b2b3e8 8ae2ea0 8b2b3e8 8ae2ea0 8b2b3e8 8ae2ea0 8b2b3e8 8ae2ea0 8b2b3e8 8ae2ea0 8b2b3e8 8ae2ea0 8b2b3e8 8ae2ea0 8b2b3e8 8ae2ea0 8b2b3e8 8ae2ea0 f3fbc2a 8ae2ea0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import gradio as gr
from ultralytics import YOLO
import torch
import cv2
import numpy as np
import wikipedia
from PIL import Image
# Load YOLO model for tree detection
yolo_model = YOLO("yolov8n.pt")
# Load MiDaS model for depth estimation
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS_small")
midas.to("cpu").eval()
# β
FIXED: Use correct MiDaS transform attribute
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms").small_transform
def estimate_tree_height(image):
# Convert to OpenCV format
image_np = np.array(image)
image_bgr = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
# Run YOLO detection
results = yolo_model(image_bgr)
boxes = results[0].boxes.xyxy.cpu().numpy()
labels = results[0].boxes.cls.cpu().numpy()
# Filter for trees (assuming class 0 is tree - adjust if needed)
tree_boxes = [box for box, label in zip(boxes, labels) if int(label) == 0]
if not tree_boxes:
return "No tree detected", None, None
x1, y1, x2, y2 = map(int, tree_boxes[0])
tree_crop = image_np[y1:y2, x1:x2]
# Depth estimation
input_tensor = midas_transforms(Image.fromarray(image_np)).to("cpu")
with torch.no_grad():
depth_map = midas(input_tensor.unsqueeze(0))[0]
depth_resized = torch.nn.functional.interpolate(
depth_map.unsqueeze(0),
size=image_np.shape[:2],
mode="bicubic",
align_corners=False
).squeeze().cpu().numpy()
avg_depth = np.mean(depth_resized[y1:y2, x1:x2])
estimated_height_m = avg_depth * 1.8 # scale arbitrarily for demo
# Wikipedia summary
try:
summary = wikipedia.summary("tree", sentences=2)
except Exception:
summary = "Tree species information not available."
return f"Estimated Tree Height: {estimated_height_m:.2f} meters", Image.fromarray(tree_crop), summary
# Gradio Interface
demo = gr.Interface(
fn=estimate_tree_height,
inputs=gr.Image(type="pil"),
outputs=[
gr.Textbox(label="Tree Height Estimate"),
gr.Image(label="Detected Tree"),
gr.Textbox(label="Tree Species Info")
],
title="π³ Tree Measurement App",
description="Upload or capture a tree image to estimate its height and get basic species info."
)
demo.launch(share=True)
|