Spaces:
Runtime error
Runtime error
File size: 15,252 Bytes
8ae2ea0 a261c62 aa4f4c1 8ae2ea0 aa4f4c1 a261c62 aa4f4c1 0fa81a3 eb93675 a261c62 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 a261c62 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 aa4f4c1 eb93675 ae38f5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
import gradio as gr
import torch
import cv2
import numpy as np
from PIL import Image
from transformers import pipeline, AutoImageProcessor, AutoModelForImageClassification
import wikipedia
import folium
import tempfile
import os
import logging
import warnings
warnings.filterwarnings("ignore")
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class TreeAnalyzer:
def __init__(self):
self.setup_models()
def setup_models(self):
"""Initialize models optimized for HF Spaces"""
logger.info("Loading models for HF Spaces...")
# Load depth estimation model
self.midas = None
try:
self.midas = torch.hub.load('intel-isl/MiDaS', 'MiDaS_small', trust_repo=True)
self.midas.eval()
self.midas_transforms = torch.hub.load('intel-isl/MiDaS', 'transforms', trust_repo=True)
self.transform = self.midas_transforms.small_transform
logger.info("β MiDaS loaded")
except Exception as e:
logger.error(f"MiDaS failed: {e}")
# Load plant classification model
self.plant_classifier = None
models_to_try = [
"google/vit-base-patch16-224",
"microsoft/resnet-50",
"facebook/convnext-tiny-224"
]
for model_name in models_to_try:
try:
self.plant_classifier = pipeline(
"image-classification",
model=model_name,
return_top_k=10
)
logger.info(f"β Loaded classifier: {model_name}")
break
except Exception as e:
logger.warning(f"Failed to load {model_name}: {e}")
continue
def estimate_tree_height(self, image):
"""Estimate tree height using depth estimation"""
if self.midas is None:
return "Height estimation not available (MiDaS model failed to load)"
try:
# Convert and resize image
img_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
h, w = img_cv.shape[:2]
# Resize for memory efficiency
if h > 384 or w > 384:
scale = min(384/h, 384/w)
new_h, new_w = int(h*scale), int(w*scale)
img_cv = cv2.resize(img_cv, (new_w, new_h))
# Process with MiDaS
input_batch = self.transform(img_cv)
with torch.no_grad():
prediction = self.midas(input_batch)
prediction = torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=(img_cv.shape[0], img_cv.shape[1]),
mode="bicubic",
align_corners=False,
).squeeze()
depth_map = prediction.cpu().numpy()
# Simple height estimation
h_img, w_img = depth_map.shape
center_region = depth_map[h_img//4:3*h_img//4, w_img//4:3*w_img//4]
if center_region.size > 0:
depth_range = np.max(center_region) - np.min(center_region)
height_ratio = center_region.shape[0] / h_img
estimated_height = max(1.5, min(50.0, (depth_range * height_ratio * 30)))
return f"Estimated height: {estimated_height:.1f} meters\n(Approximate estimate based on image depth analysis)"
else:
return "Could not estimate height from this image"
except Exception as e:
logger.error(f"Height estimation error: {e}")
return f"Height estimation failed: {str(e)}"
def identify_tree_species(self, image):
"""Identify tree species with better filtering"""
if self.plant_classifier is None:
return "Species identification not available (classifier failed to load)", []
try:
# Resize image for processing
if image.size[0] > 224 or image.size[1] > 224:
image = image.resize((224, 224), Image.Resampling.LANCZOS)
# Get predictions
predictions = self.plant_classifier(image)
# Enhanced plant/tree keywords
plant_keywords = [
# Trees
'tree', 'oak', 'pine', 'maple', 'birch', 'cedar', 'fir', 'palm', 'willow',
'cherry', 'apple', 'spruce', 'poplar', 'ash', 'elm', 'beech', 'sycamore',
'acacia', 'eucalyptus', 'magnolia', 'chestnut', 'walnut', 'hickory',
'cypress', 'juniper', 'redwood', 'bamboo', 'mahogany', 'teak',
# Plants and botanical terms
'plant', 'leaf', 'leaves', 'branch', 'bark', 'forest', 'wood', 'botanical',
'flora', 'foliage', 'evergreen', 'deciduous', 'conifer', 'hardwood',
'softwood', 'timber', 'shrub', 'bush', 'vine', 'fern', 'moss',
# Specific species indicators
'quercus', 'pinus', 'acer', 'betula', 'fagus', 'tilia', 'fraxinus',
'platanus', 'castanea', 'juglans', 'carya', 'ulmus', 'salix'
]
# Process and score predictions
species_candidates = []
for pred in predictions:
label = pred['label'].lower()
confidence = pred['score']
# Calculate plant relevance score
plant_score = sum(1 for keyword in plant_keywords if keyword in label)
is_plant_related = plant_score > 0
# Get Wikipedia info
wiki_info = self.get_wikipedia_info(pred['label'])
species_candidates.append({
'species': pred['label'],
'confidence': confidence,
'plant_score': plant_score,
'is_plant_related': is_plant_related,
'wiki_info': wiki_info
})
# Sort by plant relevance and confidence
species_candidates.sort(key=lambda x: (x['plant_score'], x['confidence']), reverse=True)
# Return top candidates
final_results = species_candidates[:3]
if any(result['is_plant_related'] for result in final_results):
return "Species identification completed", final_results
else:
return "Possible species identified (may not be plants)", final_results
except Exception as e:
logger.error(f"Species identification error: {e}")
return f"Species identification failed: {str(e)}", []
def get_wikipedia_info(self, species_name):
"""Get Wikipedia information with better error handling"""
try:
# Clean species name
clean_name = species_name.split(',')[0].split('(')[0].strip()
search_queries = [
clean_name,
f"{clean_name} tree",
f"{clean_name} plant",
f"{clean_name} species"
]
for query in search_queries:
try:
results = wikipedia.search(query, results=2)
if results:
for result in results:
try:
page = wikipedia.page(result, auto_suggest=False)
summary = wikipedia.summary(result, sentences=2, auto_suggest=False)
return {
'title': page.title,
'summary': summary,
'url': page.url
}
except:
continue
except:
continue
return {
'title': 'No information found',
'summary': f'Wikipedia information not available for {species_name}',
'url': None
}
except Exception as e:
return {
'title': 'Error',
'summary': f'Could not retrieve information: {str(e)}',
'url': None
}
def analyze_tree(image, latitude, longitude):
"""Main analysis function"""
if image is None:
return "Please upload an image", "", "", "", ""
try:
analyzer = TreeAnalyzer()
# Height estimation
height_result = analyzer.estimate_tree_height(image)
# Species identification
species_status, species_info = analyzer.identify_tree_species(image)
# Format species results
species_text = ""
if species_info:
for i, info in enumerate(species_info, 1):
species_text += f"## {i}. {info['species']}\n"
species_text += f"**Confidence:** {info['confidence']:.3f}\n"
species_text += f"**Plant-related:** {'Yes' if info['is_plant_related'] else 'Uncertain'}\n"
wiki = info['wiki_info']
species_text += f"**Wikipedia:** {wiki['title']}\n"
species_text += f"{wiki['summary']}\n"
if wiki['url']:
species_text += f"π [Read more]({wiki['url']})\n"
species_text += "\n---\n"
else:
species_text = "No species information could be determined from this image."
# Location info
location_result = ""
map_html = ""
if latitude is not None and longitude is not None:
try:
location_result = f"Coordinates: {latitude:.6f}, {longitude:.6f}"
# Create map
m = folium.Map(location=[latitude, longitude], zoom_start=15)
folium.Marker(
[latitude, longitude],
popup=f"Tree Location<br>{latitude:.6f}, {longitude:.6f}",
tooltip="Tree Location"
).add_to(m)
# Save map
map_file = tempfile.NamedTemporaryFile(delete=False, suffix='.html', mode='w')
m.save(map_file.name)
map_file.close()
with open(map_file.name, 'r', encoding='utf-8') as f:
map_html = f.read()
os.unlink(map_file.name)
except Exception as e:
location_result = f"Error processing location: {str(e)}"
map_html = "<p>Could not generate map</p>"
else:
location_result = "No GPS coordinates provided"
map_html = "<p>No location data available</p>"
return species_status, height_result, species_text, location_result, map_html
except Exception as e:
logger.error(f"Analysis failed: {e}")
return f"Analysis failed: {str(e)}", "", "", "", ""
# Gradio interface
def create_interface():
"""Create the Gradio interface"""
with gr.Blocks(title="Tree Analyzer", theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div style="text-align: center; padding: 20px;">
<h1>π³ Tree Analyzer</h1>
<p>Upload an image of a tree and optionally provide GPS coordinates for comprehensive analysis</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(
type="pil",
label="Upload Tree Image",
height=400
)
with gr.Row():
lat_input = gr.Number(
label="Latitude",
placeholder="e.g., 40.7128",
precision=6
)
lon_input = gr.Number(
label="Longitude",
placeholder="e.g., -74.0060",
precision=6
)
analyze_btn = gr.Button("π Analyze Tree", variant="primary", size="lg")
gr.HTML("""
<div style="margin-top: 20px; padding: 15px; background-color: #f0f0f0; border-radius: 8px;">
<h4>π How to get GPS coordinates:</h4>
<ul>
<li>Google Maps: Right-click location β Copy coordinates</li>
<li>Phone: Use GPS coordinate apps</li>
<li>Camera: Check photo metadata for GPS info</li>
</ul>
</div>
""")
with gr.Column(scale=2):
with gr.Tab("π Analysis Results"):
status_output = gr.Textbox(
label="Analysis Status",
interactive=False
)
height_output = gr.Textbox(
label="Height Estimation",
interactive=False,
lines=3
)
species_output = gr.Markdown(
label="Species Identification",
height=300
)
with gr.Tab("πΊοΈ Location"):
location_output = gr.Textbox(
label="Location Information",
interactive=False
)
map_output = gr.HTML(
label="Location Map",
height=400
)
# Connect the analyze button
analyze_btn.click(
fn=analyze_tree,
inputs=[image_input, lat_input, lon_input],
outputs=[status_output, height_output, species_output, location_output, map_output]
)
gr.HTML("""
<div style="text-align: center; padding: 20px; margin-top: 30px; border-top: 1px solid #ddd;">
<p><strong>Features:</strong></p>
<p>π Species identification using AI models | π Height estimation via depth analysis | πΊοΈ Location mapping | π Wikipedia integration</p>
<p style="color: #666; font-size: 0.9em;">
Note: This tool provides estimates and suggestions. For scientific purposes, consult with professional botanists or arborists.
</p>
</div>
""")
return demo
if __name__ == "__main__":
# Create and launch the interface
demo = create_interface()
demo.launch(
share=True,
debug=True,
show_error=True
) |