Prathamesh Sarjerao Vaidya
added files
3f792e8
"""
Output Formatting Module for Multilingual Audio Intelligence System
This module consolidates processed data from speaker diarization, speech recognition,
and neural machine translation into various structured formats for different use cases.
Designed for maximum flexibility and user-friendly output presentation.
Key Features:
- JSON format for programmatic access and API integration
- SRT subtitle format for video/media players with speaker labels
- Human-readable text format with rich metadata
- Interactive timeline format for web visualization
- CSV export for data analysis and spreadsheet applications
- Rich metadata preservation throughout all formats
- Error handling and graceful degradation
Output Formats: JSON, SRT, Plain Text, CSV, Timeline
Dependencies: json, csv, dataclasses
"""
import json
import csv
import io
import logging
from typing import List, Dict, Optional, Union, Any
from dataclasses import dataclass, asdict
from datetime import timedelta
import textwrap
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class ProcessedSegment:
"""
Unified data structure for a processed audio segment with all metadata.
Attributes:
start_time (float): Segment start time in seconds
end_time (float): Segment end time in seconds
speaker_id (str): Speaker identifier
original_text (str): Transcribed text in original language
original_language (str): Detected original language code
translated_text (str): English translation
confidence_diarization (float): Speaker diarization confidence
confidence_transcription (float): Speech recognition confidence
confidence_translation (float): Translation confidence
word_timestamps (List[Dict]): Word-level timing information
model_info (Dict): Information about models used
"""
start_time: float
end_time: float
speaker_id: str
original_text: str
original_language: str
translated_text: str
confidence_diarization: float = 1.0
confidence_transcription: float = 1.0
confidence_translation: float = 1.0
word_timestamps: Optional[List[Dict]] = None
model_info: Optional[Dict] = None
@property
def duration(self) -> float:
"""Duration of the segment in seconds."""
return self.end_time - self.start_time
def to_dict(self) -> dict:
"""Convert to dictionary for JSON serialization."""
return asdict(self)
class OutputFormatter:
"""
Advanced output formatting for multilingual audio intelligence results.
Converts processed audio data into multiple user-friendly formats with
comprehensive metadata and beautiful presentation.
"""
def __init__(self, audio_filename: str = "audio_file"):
"""
Initialize the Output Formatter.
Args:
audio_filename (str): Name of the original audio file for references
"""
self.audio_filename = audio_filename
self.creation_timestamp = None
self.processing_stats = {}
def format_all_outputs(self,
segments: List[ProcessedSegment],
audio_metadata: Optional[Dict] = None,
processing_stats: Optional[Dict] = None) -> Dict[str, str]:
"""
Generate all output formats in one call.
Args:
segments (List[ProcessedSegment]): Processed audio segments
audio_metadata (Dict, optional): Original audio file metadata
processing_stats (Dict, optional): Processing time and performance stats
Returns:
Dict[str, str]: Dictionary with all formatted outputs
"""
self.processing_stats = processing_stats or {}
return {
'json': self.to_json(segments, audio_metadata),
'srt_original': self.to_srt(segments, use_translation=False),
'srt_translated': self.to_srt(segments, use_translation=True),
'text': self.to_text(segments, audio_metadata),
'csv': self.to_csv(segments),
'timeline': self.to_timeline_json(segments),
'summary': self.generate_summary(segments, audio_metadata)
}
def to_json(self,
segments: List[ProcessedSegment],
audio_metadata: Optional[Dict] = None) -> str:
"""
Convert segments to comprehensive JSON format.
Args:
segments (List[ProcessedSegment]): Processed segments
audio_metadata (Dict, optional): Audio file metadata
Returns:
str: JSON formatted string
"""
# Generate comprehensive statistics
stats = self._generate_statistics(segments)
# Create the main JSON structure
output = {
"metadata": {
"audio_filename": self.audio_filename,
"processing_timestamp": self._get_timestamp(),
"total_segments": len(segments),
"total_speakers": len(set(seg.speaker_id for seg in segments)),
"languages_detected": list(set(seg.original_language for seg in segments)),
"total_audio_duration": stats['total_duration'],
"total_speech_duration": stats['total_speech_duration'],
"speech_ratio": stats['speech_ratio'],
"audio_metadata": audio_metadata,
"processing_stats": self.processing_stats
},
"statistics": stats,
"segments": [seg.to_dict() for seg in segments],
"speakers": self._generate_speaker_stats(segments),
"languages": self._generate_language_stats(segments)
}
return json.dumps(output, indent=2, ensure_ascii=False)
def to_srt(self,
segments: List[ProcessedSegment],
use_translation: bool = False,
include_speaker_labels: bool = True) -> str:
"""
Convert segments to SRT subtitle format.
Args:
segments (List[ProcessedSegment]): Processed segments
use_translation (bool): Use translated text instead of original
include_speaker_labels (bool): Include speaker names in subtitles
Returns:
str: SRT formatted string
"""
srt_lines = []
for i, segment in enumerate(segments, 1):
# Format timestamp for SRT (HH:MM:SS,mmm)
start_time = self._seconds_to_srt_time(segment.start_time)
end_time = self._seconds_to_srt_time(segment.end_time)
# Choose text based on preference
text = segment.translated_text if use_translation else segment.original_text
# Add speaker label if requested
if include_speaker_labels:
speaker_name = self._format_speaker_name(segment.speaker_id)
text = f"<v {speaker_name}>{text}"
# Add language indicator for original text
if not use_translation and segment.original_language != 'en':
text = f"[{segment.original_language.upper()}] {text}"
# Build SRT entry
srt_entry = [
str(i),
f"{start_time} --> {end_time}",
text,
"" # Empty line separator
]
srt_lines.extend(srt_entry)
return "\n".join(srt_lines)
def to_text(self,
segments: List[ProcessedSegment],
audio_metadata: Optional[Dict] = None,
include_word_timestamps: bool = False) -> str:
"""
Convert segments to human-readable text format.
Args:
segments (List[ProcessedSegment]): Processed segments
audio_metadata (Dict, optional): Audio file metadata
include_word_timestamps (bool): Include detailed word timing
Returns:
str: Formatted text string
"""
lines = []
# Header section
lines.append("=" * 80)
lines.append("MULTILINGUAL AUDIO INTELLIGENCE ANALYSIS")
lines.append("=" * 80)
lines.append("")
# File information
lines.append(f"Audio File: {self.audio_filename}")
lines.append(f"Analysis Date: {self._get_timestamp()}")
if audio_metadata:
lines.append(f"Duration: {self._format_duration(audio_metadata.get('duration_seconds', 0))}")
lines.append(f"Sample Rate: {audio_metadata.get('sample_rate', 'Unknown')} Hz")
lines.append(f"Channels: {audio_metadata.get('channels', 'Unknown')}")
lines.append("")
# Statistics section
stats = self._generate_statistics(segments)
lines.append("ANALYSIS SUMMARY")
lines.append("-" * 40)
lines.append(f"Total Speakers: {len(set(seg.speaker_id for seg in segments))}")
lines.append(f"Languages Detected: {', '.join(set(seg.original_language for seg in segments))}")
lines.append(f"Total Segments: {len(segments)}")
lines.append(f"Speech Duration: {self._format_duration(stats['total_speech_duration'])}")
lines.append(f"Speech Ratio: {stats['speech_ratio']:.1%}")
if self.processing_stats:
lines.append(f"Processing Time: {self.processing_stats.get('total_time', 'Unknown')}")
lines.append("")
# Speaker statistics
speaker_stats = self._generate_speaker_stats(segments)
lines.append("SPEAKER BREAKDOWN")
lines.append("-" * 40)
for speaker_id, stats in speaker_stats.items():
speaker_name = self._format_speaker_name(speaker_id)
lines.append(f"{speaker_name}:")
lines.append(f" Speaking Time: {self._format_duration(stats['total_speaking_time'])}")
lines.append(f" Number of Turns: {stats['number_of_turns']}")
lines.append(f" Average Turn: {self._format_duration(stats['average_turn_duration'])}")
lines.append(f" Longest Turn: {self._format_duration(stats['longest_turn'])}")
if stats['languages']:
lines.append(f" Languages: {', '.join(stats['languages'])}")
lines.append("")
# Transcript section
lines.append("FULL TRANSCRIPT")
lines.append("=" * 80)
lines.append("")
for i, segment in enumerate(segments, 1):
# Timestamp and speaker header
timestamp = f"[{self._format_duration(segment.start_time)} - {self._format_duration(segment.end_time)}]"
speaker_name = self._format_speaker_name(segment.speaker_id)
lines.append(f"#{i:3d} {timestamp} {speaker_name}")
# Original text with language indicator
if segment.original_language != 'en':
lines.append(f" Original ({segment.original_language}): {segment.original_text}")
lines.append(f" Translation: {segment.translated_text}")
else:
lines.append(f" Text: {segment.original_text}")
# Confidence scores
lines.append(f" Confidence: D:{segment.confidence_diarization:.2f} "
f"T:{segment.confidence_transcription:.2f} "
f"TR:{segment.confidence_translation:.2f}")
# Word timestamps if requested
if include_word_timestamps and segment.word_timestamps:
lines.append(" Word Timing:")
word_lines = []
for word_info in segment.word_timestamps[:10]: # Limit to first 10 words
word_time = f"{word_info['start']:.1f}s"
word_lines.append(f"'{word_info['word']}'@{word_time}")
lines.append(f" {', '.join(word_lines)}")
if len(segment.word_timestamps) > 10:
lines.append(f" ... and {len(segment.word_timestamps) - 10} more words")
lines.append("")
# Footer
lines.append("=" * 80)
lines.append("Generated by Multilingual Audio Intelligence System")
lines.append("=" * 80)
return "\n".join(lines)
def to_csv(self, segments: List[ProcessedSegment]) -> str:
"""
Convert segments to CSV format for data analysis.
Args:
segments (List[ProcessedSegment]): Processed segments
Returns:
str: CSV formatted string
"""
output = io.StringIO()
fieldnames = [
'segment_id', 'start_time', 'end_time', 'duration',
'speaker_id', 'original_language', 'original_text',
'translated_text', 'confidence_diarization',
'confidence_transcription', 'confidence_translation',
'word_count_original', 'word_count_translated'
]
writer = csv.DictWriter(output, fieldnames=fieldnames)
writer.writeheader()
for i, segment in enumerate(segments, 1):
row = {
'segment_id': i,
'start_time': segment.start_time,
'end_time': segment.end_time,
'duration': segment.duration,
'speaker_id': segment.speaker_id,
'original_language': segment.original_language,
'original_text': segment.original_text,
'translated_text': segment.translated_text,
'confidence_diarization': segment.confidence_diarization,
'confidence_transcription': segment.confidence_transcription,
'confidence_translation': segment.confidence_translation,
'word_count_original': len(segment.original_text.split()),
'word_count_translated': len(segment.translated_text.split())
}
writer.writerow(row)
return output.getvalue()
def to_timeline_json(self, segments: List[ProcessedSegment]) -> str:
"""
Convert segments to timeline JSON format for interactive visualization.
Args:
segments (List[ProcessedSegment]): Processed segments
Returns:
str: Timeline JSON formatted string
"""
# Prepare timeline data
timeline_data = {
"title": {
"text": {
"headline": f"Audio Analysis: {self.audio_filename}",
"text": f"Interactive timeline of speaker segments and transcription"
}
},
"events": []
}
for i, segment in enumerate(segments):
event = {
"start_date": {
"second": int(segment.start_time)
},
"end_date": {
"second": int(segment.end_time)
},
"text": {
"headline": f"{self._format_speaker_name(segment.speaker_id)} ({segment.original_language})",
"text": f"<p><strong>Original:</strong> {segment.original_text}</p>"
f"<p><strong>Translation:</strong> {segment.translated_text}</p>"
f"<p><em>Duration: {segment.duration:.1f}s, "
f"Confidence: {segment.confidence_transcription:.2f}</em></p>"
},
"group": segment.speaker_id,
"media": {
"caption": f"Segment {i+1}: {self._format_duration(segment.start_time)} - {self._format_duration(segment.end_time)}"
}
}
timeline_data["events"].append(event)
return json.dumps(timeline_data, indent=2, ensure_ascii=False)
def generate_summary(self,
segments: List[ProcessedSegment],
audio_metadata: Optional[Dict] = None) -> str:
"""
Generate a concise summary of the analysis.
Args:
segments (List[ProcessedSegment]): Processed segments
audio_metadata (Dict, optional): Audio file metadata
Returns:
str: Summary text
"""
if not segments:
return "No speech segments were detected in the audio file."
stats = self._generate_statistics(segments)
speaker_stats = self._generate_speaker_stats(segments)
summary_lines = []
# Basic overview
summary_lines.append(f"ANALYSIS SUMMARY FOR {self.audio_filename}")
summary_lines.append("=" * 50)
summary_lines.append("")
# Key statistics
summary_lines.append(f"• {len(set(seg.speaker_id for seg in segments))} speakers detected")
summary_lines.append(f"• {len(segments)} speech segments identified")
summary_lines.append(f"• {len(set(seg.original_language for seg in segments))} languages detected: "
f"{', '.join(set(seg.original_language for seg in segments))}")
summary_lines.append(f"• {stats['speech_ratio']:.1%} of audio contains speech")
summary_lines.append("")
# Speaker overview
summary_lines.append("SPEAKER BREAKDOWN:")
for speaker_id, stats in speaker_stats.items():
speaker_name = self._format_speaker_name(speaker_id)
percentage = (stats['total_speaking_time'] / sum(s['total_speaking_time'] for s in speaker_stats.values())) * 100
summary_lines.append(f"• {speaker_name}: {self._format_duration(stats['total_speaking_time'])} "
f"({percentage:.1f}%) across {stats['number_of_turns']} turns")
summary_lines.append("")
# Language breakdown if multilingual
languages = set(seg.original_language for seg in segments)
if len(languages) > 1:
summary_lines.append("LANGUAGE BREAKDOWN:")
lang_stats = self._generate_language_stats(segments)
for lang, stats in lang_stats.items():
percentage = (stats['speaking_time'] / sum(s['speaking_time'] for s in lang_stats.values())) * 100
summary_lines.append(f"• {lang.upper()}: {self._format_duration(stats['speaking_time'])} "
f"({percentage:.1f}%) in {stats['segment_count']} segments")
summary_lines.append("")
# Key insights
summary_lines.append("KEY INSIGHTS:")
# Most active speaker
most_active = max(speaker_stats.items(), key=lambda x: x[1]['total_speaking_time'])
summary_lines.append(f"• Most active speaker: {self._format_speaker_name(most_active[0])}")
# Longest turn
longest_segment = max(segments, key=lambda s: s.duration)
summary_lines.append(f"• Longest speaking turn: {self._format_duration(longest_segment.duration)} "
f"by {self._format_speaker_name(longest_segment.speaker_id)}")
# Average confidence
avg_confidence = sum(seg.confidence_transcription for seg in segments) / len(segments)
summary_lines.append(f"• Average transcription confidence: {avg_confidence:.2f}")
if len(languages) > 1:
# Code-switching detection
code_switches = 0
for i in range(1, len(segments)):
if segments[i-1].speaker_id == segments[i].speaker_id and segments[i-1].original_language != segments[i].original_language:
code_switches += 1
if code_switches > 0:
summary_lines.append(f"• {code_switches} potential code-switching instances detected")
return "\n".join(summary_lines)
def _generate_statistics(self, segments: List[ProcessedSegment]) -> Dict[str, Any]:
"""Generate comprehensive statistics from segments."""
if not segments:
return {}
total_speech_duration = sum(seg.duration for seg in segments)
total_duration = max(seg.end_time for seg in segments) if segments else 0
return {
'total_duration': total_duration,
'total_speech_duration': total_speech_duration,
'speech_ratio': total_speech_duration / total_duration if total_duration > 0 else 0,
'average_segment_duration': total_speech_duration / len(segments),
'longest_segment': max(seg.duration for seg in segments),
'shortest_segment': min(seg.duration for seg in segments),
'average_confidence_diarization': sum(seg.confidence_diarization for seg in segments) / len(segments),
'average_confidence_transcription': sum(seg.confidence_transcription for seg in segments) / len(segments),
'average_confidence_translation': sum(seg.confidence_translation for seg in segments) / len(segments),
'total_words_original': sum(len(seg.original_text.split()) for seg in segments),
'total_words_translated': sum(len(seg.translated_text.split()) for seg in segments)
}
def _generate_speaker_stats(self, segments: List[ProcessedSegment]) -> Dict[str, Dict]:
"""Generate per-speaker statistics."""
speaker_stats = {}
for segment in segments:
speaker_id = segment.speaker_id
if speaker_id not in speaker_stats:
speaker_stats[speaker_id] = {
'total_speaking_time': 0.0,
'number_of_turns': 0,
'longest_turn': 0.0,
'shortest_turn': float('inf'),
'languages': set()
}
stats = speaker_stats[speaker_id]
stats['total_speaking_time'] += segment.duration
stats['number_of_turns'] += 1
stats['longest_turn'] = max(stats['longest_turn'], segment.duration)
stats['shortest_turn'] = min(stats['shortest_turn'], segment.duration)
stats['languages'].add(segment.original_language)
# Calculate averages and convert sets to lists
for speaker_id, stats in speaker_stats.items():
if stats['number_of_turns'] > 0:
stats['average_turn_duration'] = stats['total_speaking_time'] / stats['number_of_turns']
else:
stats['average_turn_duration'] = 0.0
if stats['shortest_turn'] == float('inf'):
stats['shortest_turn'] = 0.0
stats['languages'] = list(stats['languages'])
return speaker_stats
def _generate_language_stats(self, segments: List[ProcessedSegment]) -> Dict[str, Dict]:
"""Generate per-language statistics."""
language_stats = {}
for segment in segments:
lang = segment.original_language
if lang not in language_stats:
language_stats[lang] = {
'speaking_time': 0.0,
'segment_count': 0,
'speakers': set()
}
stats = language_stats[lang]
stats['speaking_time'] += segment.duration
stats['segment_count'] += 1
stats['speakers'].add(segment.speaker_id)
# Convert sets to lists
for lang, stats in language_stats.items():
stats['speakers'] = list(stats['speakers'])
return language_stats
def _seconds_to_srt_time(self, seconds: float) -> str:
"""Convert seconds to SRT timestamp format (HH:MM:SS,mmm)."""
td = timedelta(seconds=seconds)
hours, remainder = divmod(td.total_seconds(), 3600)
minutes, seconds = divmod(remainder, 60)
milliseconds = int((seconds % 1) * 1000)
return f"{int(hours):02d}:{int(minutes):02d}:{int(seconds):02d},{milliseconds:03d}"
def _format_duration(self, seconds: float) -> str:
"""Format duration in human-readable format."""
if seconds < 60:
return f"{seconds:.1f}s"
elif seconds < 3600:
minutes = int(seconds // 60)
secs = seconds % 60
return f"{minutes}m {secs:.1f}s"
else:
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
secs = seconds % 60
return f"{hours}h {minutes}m {secs:.1f}s"
def _format_speaker_name(self, speaker_id: str) -> str:
"""Format speaker ID into a readable name."""
if speaker_id.startswith("SPEAKER_"):
number = speaker_id.replace("SPEAKER_", "")
return f"Speaker {number}"
return speaker_id.replace("_", " ").title()
def _get_timestamp(self) -> str:
"""Get current timestamp in ISO format."""
from datetime import datetime
return datetime.now().isoformat()
# Convenience functions for easy usage
def create_processed_segment(start_time: float,
end_time: float,
speaker_id: str,
original_text: str,
original_language: str,
translated_text: str,
**kwargs) -> ProcessedSegment:
"""
Convenience function to create a ProcessedSegment.
Args:
start_time (float): Segment start time
end_time (float): Segment end time
speaker_id (str): Speaker identifier
original_text (str): Original transcribed text
original_language (str): Original language code
translated_text (str): Translated text
**kwargs: Additional optional parameters
Returns:
ProcessedSegment: Created segment object
"""
return ProcessedSegment(
start_time=start_time,
end_time=end_time,
speaker_id=speaker_id,
original_text=original_text,
original_language=original_language,
translated_text=translated_text,
**kwargs
)
def format_pipeline_output(diarization_segments,
transcription_segments,
translation_results,
audio_filename: str = "audio_file",
audio_metadata: Optional[Dict] = None) -> Dict[str, str]:
"""
Convenience function to format complete pipeline output.
Args:
diarization_segments: Speaker diarization results
transcription_segments: Speech recognition results
translation_results: Translation results
audio_filename (str): Original audio filename
audio_metadata (Dict, optional): Audio file metadata
Returns:
Dict[str, str]: All formatted outputs
"""
# Combine all results into ProcessedSegment objects
processed_segments = []
# This is a simplified combination - in practice you'd need proper alignment
for i, (diar_seg, trans_seg, trans_result) in enumerate(
zip(diarization_segments, transcription_segments, translation_results)
):
segment = ProcessedSegment(
start_time=diar_seg.start_time,
end_time=diar_seg.end_time,
speaker_id=diar_seg.speaker_id,
original_text=trans_seg.text,
original_language=trans_seg.language,
translated_text=trans_result.translated_text,
confidence_diarization=diar_seg.confidence,
confidence_transcription=trans_seg.confidence,
confidence_translation=trans_result.confidence,
word_timestamps=trans_seg.word_timestamps
)
processed_segments.append(segment)
# Format all outputs
formatter = OutputFormatter(audio_filename)
return formatter.format_all_outputs(processed_segments, audio_metadata)
# Example usage and testing
if __name__ == "__main__":
import argparse
def main():
"""Command line interface for testing output formatting."""
parser = argparse.ArgumentParser(description="Audio Analysis Output Formatter")
parser.add_argument("--demo", action="store_true",
help="Run with demo data")
parser.add_argument("--format", choices=["json", "srt", "text", "csv", "timeline", "all"],
default="all", help="Output format to generate")
parser.add_argument("--output-file", "-o",
help="Save output to file instead of printing")
args = parser.parse_args()
if args.demo:
# Create demo data
demo_segments = [
ProcessedSegment(
start_time=0.0, end_time=3.5,
speaker_id="SPEAKER_00",
original_text="Hello, how are you today?",
original_language="en",
translated_text="Hello, how are you today?",
confidence_diarization=0.95,
confidence_transcription=0.92,
confidence_translation=1.0,
word_timestamps=[
{"word": "Hello", "start": 0.0, "end": 0.5, "confidence": 0.99},
{"word": "how", "start": 1.0, "end": 1.2, "confidence": 0.98},
{"word": "are", "start": 1.3, "end": 1.5, "confidence": 0.97},
{"word": "you", "start": 1.6, "end": 1.9, "confidence": 0.98},
{"word": "today", "start": 2.5, "end": 3.2, "confidence": 0.96}
]
),
ProcessedSegment(
start_time=4.0, end_time=7.8,
speaker_id="SPEAKER_01",
original_text="Bonjour, comment allez-vous?",
original_language="fr",
translated_text="Hello, how are you?",
confidence_diarization=0.87,
confidence_transcription=0.89,
confidence_translation=0.94
),
ProcessedSegment(
start_time=8.5, end_time=12.1,
speaker_id="SPEAKER_00",
original_text="I'm doing well, thank you. What about you?",
original_language="en",
translated_text="I'm doing well, thank you. What about you?",
confidence_diarization=0.93,
confidence_transcription=0.95,
confidence_translation=1.0
),
ProcessedSegment(
start_time=13.0, end_time=16.2,
speaker_id="SPEAKER_01",
original_text="Ça va très bien, merci beaucoup!",
original_language="fr",
translated_text="I'm doing very well, thank you very much!",
confidence_diarization=0.91,
confidence_transcription=0.88,
confidence_translation=0.92
)
]
demo_metadata = {
"duration_seconds": 16.2,
"sample_rate": 16000,
"channels": 1
}
# Create formatter and generate output
formatter = OutputFormatter("demo_conversation.wav")
if args.format == "all":
outputs = formatter.format_all_outputs(demo_segments, demo_metadata)
if args.output_file:
# Save each format to separate files
base_name = args.output_file.rsplit('.', 1)[0]
for format_type, content in outputs.items():
filename = f"{base_name}.{format_type}"
with open(filename, 'w', encoding='utf-8') as f:
f.write(content)
print(f"Saved {format_type} output to {filename}")
else:
# Print all formats
for format_type, content in outputs.items():
print(f"\n{'='*20} {format_type.upper()} {'='*20}")
print(content)
else:
# Generate specific format
if args.format == "json":
output = formatter.to_json(demo_segments, demo_metadata)
elif args.format == "srt":
output = formatter.to_srt(demo_segments, use_translation=False)
elif args.format == "text":
output = formatter.to_text(demo_segments, demo_metadata)
elif args.format == "csv":
output = formatter.to_csv(demo_segments)
elif args.format == "timeline":
output = formatter.to_timeline_json(demo_segments)
if args.output_file:
with open(args.output_file, 'w', encoding='utf-8') as f:
f.write(output)
print(f"Output saved to {args.output_file}")
else:
print(output)
else:
print("Please use --demo flag to run with demo data, or integrate with your audio processing pipeline.")
main()