Prathamesh Sarjerao Vaidya
added files
3f792e8
"""
Neural Machine Translation Module for Multilingual Audio Intelligence System
This module implements state-of-the-art neural machine translation using Helsinki-NLP/Opus-MT
models. Designed for efficient CPU-based translation with dynamic model loading and
intelligent batching strategies.
Key Features:
- Dynamic model loading for 100+ language pairs
- Helsinki-NLP/Opus-MT models (300MB each) for specific language pairs
- Intelligent batching for maximum CPU throughput
- Fallback to multilingual models (mBART, M2M-100) for rare languages
- Memory-efficient model management with automatic cleanup
- Robust error handling and translation confidence scoring
- Cache management for frequently used language pairs
Models: Helsinki-NLP/opus-mt-* series, Facebook mBART50, M2M-100
Dependencies: transformers, torch, sentencepiece
"""
import os
import logging
import warnings
import torch
from typing import List, Dict, Optional, Tuple, Union
import gc
from dataclasses import dataclass
from collections import defaultdict
import time
try:
from transformers import (
MarianMTModel, MarianTokenizer,
MBartForConditionalGeneration, MBart50TokenizerFast,
M2M100ForConditionalGeneration, M2M100Tokenizer,
pipeline
)
TRANSFORMERS_AVAILABLE = True
except ImportError:
TRANSFORMERS_AVAILABLE = False
logging.warning("transformers not available. Install with: pip install transformers")
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Suppress warnings for cleaner output
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
@dataclass
class TranslationResult:
"""
Data class representing a translation result with metadata.
Attributes:
original_text (str): Original text in source language
translated_text (str): Translated text in target language
source_language (str): Source language code
target_language (str): Target language code
confidence (float): Translation confidence score
model_used (str): Name of the model used for translation
processing_time (float): Time taken for translation in seconds
"""
original_text: str
translated_text: str
source_language: str
target_language: str
confidence: float = 1.0
model_used: str = "unknown"
processing_time: float = 0.0
def to_dict(self) -> dict:
"""Convert to dictionary for JSON serialization."""
return {
'original_text': self.original_text,
'translated_text': self.translated_text,
'source_language': self.source_language,
'target_language': self.target_language,
'confidence': self.confidence,
'model_used': self.model_used,
'processing_time': self.processing_time
}
class NeuralTranslator:
"""
Advanced neural machine translation with dynamic model loading.
Supports 100+ languages through Helsinki-NLP/Opus-MT models with intelligent
fallback strategies and efficient memory management.
"""
def __init__(self,
target_language: str = "en",
device: Optional[str] = None,
cache_size: int = 3,
use_multilingual_fallback: bool = True,
model_cache_dir: Optional[str] = None):
"""
Initialize the Neural Translator.
Args:
target_language (str): Target language code (default: 'en' for English)
device (str, optional): Device to run on ('cpu', 'cuda', 'auto')
cache_size (int): Maximum number of models to keep in memory
use_multilingual_fallback (bool): Use mBART/M2M-100 for unsupported pairs
model_cache_dir (str, optional): Directory to cache downloaded models
"""
self.target_language = target_language
self.cache_size = cache_size
self.use_multilingual_fallback = use_multilingual_fallback
self.model_cache_dir = model_cache_dir
# Device selection
if device == 'auto' or device is None:
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
else:
self.device = torch.device(device)
logger.info(f"Initializing NeuralTranslator: target={target_language}, "
f"device={self.device}, cache_size={cache_size}")
# Model cache and management
self.model_cache = {} # {model_name: (model, tokenizer, last_used)}
self.fallback_model = None
self.fallback_tokenizer = None
self.fallback_model_name = None
# Language mapping for Helsinki-NLP models
self.language_mapping = self._get_language_mapping()
# Supported language pairs cache
self._supported_pairs_cache = None
# Initialize fallback model if requested
if use_multilingual_fallback:
self._load_fallback_model()
def _get_language_mapping(self) -> Dict[str, str]:
"""Get mapping of language codes to Helsinki-NLP model codes."""
# Common language mappings for Helsinki-NLP/Opus-MT
return {
'en': 'en', 'es': 'es', 'fr': 'fr', 'de': 'de', 'it': 'it', 'pt': 'pt',
'ru': 'ru', 'zh': 'zh', 'ja': 'ja', 'ko': 'ko', 'ar': 'ar', 'hi': 'hi',
'tr': 'tr', 'pl': 'pl', 'nl': 'nl', 'sv': 'sv', 'da': 'da', 'no': 'no',
'fi': 'fi', 'hu': 'hu', 'cs': 'cs', 'sk': 'sk', 'sl': 'sl', 'hr': 'hr',
'bg': 'bg', 'ro': 'ro', 'el': 'el', 'he': 'he', 'th': 'th', 'vi': 'vi',
'id': 'id', 'ms': 'ms', 'tl': 'tl', 'sw': 'sw', 'eu': 'eu', 'ca': 'ca',
'gl': 'gl', 'cy': 'cy', 'ga': 'ga', 'mt': 'mt', 'is': 'is', 'lv': 'lv',
'lt': 'lt', 'et': 'et', 'mk': 'mk', 'sq': 'sq', 'be': 'be', 'uk': 'uk',
'ka': 'ka', 'hy': 'hy', 'az': 'az', 'kk': 'kk', 'ky': 'ky', 'uz': 'uz',
'fa': 'fa', 'ur': 'ur', 'bn': 'bn', 'ta': 'ta', 'te': 'te', 'ml': 'ml',
'kn': 'kn', 'gu': 'gu', 'pa': 'pa', 'mr': 'mr', 'ne': 'ne', 'si': 'si',
'my': 'my', 'km': 'km', 'lo': 'lo', 'mn': 'mn', 'bo': 'bo'
}
def _load_fallback_model(self):
"""Load multilingual fallback model (mBART50 or M2M-100)."""
try:
# Try mBART50 first (smaller and faster)
logger.info("Loading mBART50 multilingual fallback model...")
self.fallback_model = MBartForConditionalGeneration.from_pretrained(
"facebook/mbart-large-50-many-to-many-mmt",
cache_dir=self.model_cache_dir
).to(self.device)
self.fallback_tokenizer = MBart50TokenizerFast.from_pretrained(
"facebook/mbart-large-50-many-to-many-mmt",
cache_dir=self.model_cache_dir
)
self.fallback_model_name = "mbart50"
logger.info("mBART50 fallback model loaded successfully")
except Exception as e:
logger.warning(f"Failed to load mBART50: {e}")
try:
# Fallback to M2M-100 (larger but more comprehensive)
logger.info("Loading M2M-100 multilingual fallback model...")
self.fallback_model = M2M100ForConditionalGeneration.from_pretrained(
"facebook/m2m100_418M",
cache_dir=self.model_cache_dir
).to(self.device)
self.fallback_tokenizer = M2M100Tokenizer.from_pretrained(
"facebook/m2m100_418M",
cache_dir=self.model_cache_dir
)
self.fallback_model_name = "m2m100"
logger.info("M2M-100 fallback model loaded successfully")
except Exception as e2:
logger.warning(f"Failed to load M2M-100: {e2}")
self.fallback_model = None
self.fallback_tokenizer = None
self.fallback_model_name = None
def translate_text(self,
text: str,
source_language: str,
target_language: Optional[str] = None) -> TranslationResult:
"""
Translate a single text segment.
Args:
text (str): Text to translate
source_language (str): Source language code
target_language (str, optional): Target language code (uses default if None)
Returns:
TranslationResult: Translation result with metadata
"""
if not text or not text.strip():
return TranslationResult(
original_text=text,
translated_text=text,
source_language=source_language,
target_language=target_language or self.target_language,
confidence=0.0,
model_used="none",
processing_time=0.0
)
target_lang = target_language or self.target_language
# Skip translation if source equals target
if source_language == target_lang:
return TranslationResult(
original_text=text,
translated_text=text,
source_language=source_language,
target_language=target_lang,
confidence=1.0,
model_used="identity",
processing_time=0.0
)
start_time = time.time()
try:
# Try Helsinki-NLP model first
model_name = self._get_model_name(source_language, target_lang)
if model_name:
result = self._translate_with_opus_mt(
text, source_language, target_lang, model_name
)
elif self.fallback_model:
result = self._translate_with_fallback(
text, source_language, target_lang
)
else:
# No translation available
result = TranslationResult(
original_text=text,
translated_text=text,
source_language=source_language,
target_language=target_lang,
confidence=0.0,
model_used="unavailable",
processing_time=0.0
)
result.processing_time = time.time() - start_time
return result
except Exception as e:
logger.error(f"Translation failed: {e}")
return TranslationResult(
original_text=text,
translated_text=text,
source_language=source_language,
target_language=target_lang,
confidence=0.0,
model_used="error",
processing_time=time.time() - start_time
)
def translate_batch(self,
texts: List[str],
source_languages: List[str],
target_language: Optional[str] = None,
batch_size: int = 8) -> List[TranslationResult]:
"""
Translate multiple texts efficiently using batching.
Args:
texts (List[str]): List of texts to translate
source_languages (List[str]): List of source language codes
target_language (str, optional): Target language code
batch_size (int): Batch size for processing
Returns:
List[TranslationResult]: List of translation results
"""
if len(texts) != len(source_languages):
raise ValueError("Number of texts must match number of source languages")
target_lang = target_language or self.target_language
results = []
# Group by language pair for efficient batching
language_groups = defaultdict(list)
for i, (text, src_lang) in enumerate(zip(texts, source_languages)):
if text and text.strip():
language_groups[(src_lang, target_lang)].append((i, text))
# Process each language group
for (src_lang, tgt_lang), items in language_groups.items():
if src_lang == tgt_lang:
# Identity translation
for idx, text in items:
results.append((idx, TranslationResult(
original_text=text,
translated_text=text,
source_language=src_lang,
target_language=tgt_lang,
confidence=1.0,
model_used="identity",
processing_time=0.0
)))
else:
# Translate in batches
for i in range(0, len(items), batch_size):
batch_items = items[i:i + batch_size]
batch_texts = [item[1] for item in batch_items]
batch_indices = [item[0] for item in batch_items]
batch_results = self._translate_batch_same_language(
batch_texts, src_lang, tgt_lang
)
for idx, result in zip(batch_indices, batch_results):
results.append((idx, result))
# Fill in empty texts and sort by original order
final_results = [None] * len(texts)
for idx, result in results:
final_results[idx] = result
# Handle empty texts
for i, result in enumerate(final_results):
if result is None:
final_results[i] = TranslationResult(
original_text=texts[i],
translated_text=texts[i],
source_language=source_languages[i],
target_language=target_lang,
confidence=0.0,
model_used="empty",
processing_time=0.0
)
return final_results
def _translate_batch_same_language(self,
texts: List[str],
source_language: str,
target_language: str) -> List[TranslationResult]:
"""Translate a batch of texts from the same source language."""
try:
model_name = self._get_model_name(source_language, target_language)
if model_name:
return self._translate_batch_opus_mt(
texts, source_language, target_language, model_name
)
elif self.fallback_model:
return self._translate_batch_fallback(
texts, source_language, target_language
)
else:
# No translation available
return [
TranslationResult(
original_text=text,
translated_text=text,
source_language=source_language,
target_language=target_language,
confidence=0.0,
model_used="unavailable",
processing_time=0.0
)
for text in texts
]
except Exception as e:
logger.error(f"Batch translation failed: {e}")
return [
TranslationResult(
original_text=text,
translated_text=text,
source_language=source_language,
target_language=target_language,
confidence=0.0,
model_used="error",
processing_time=0.0
)
for text in texts
]
def _get_model_name(self, source_lang: str, target_lang: str) -> Optional[str]:
"""Get Helsinki-NLP model name for language pair."""
# Map language codes
src_mapped = self.language_mapping.get(source_lang, source_lang)
tgt_mapped = self.language_mapping.get(target_lang, target_lang)
# Common Helsinki-NLP model patterns
model_patterns = [
f"Helsinki-NLP/opus-mt-{src_mapped}-{tgt_mapped}",
f"Helsinki-NLP/opus-mt-{source_lang}-{target_lang}",
f"Helsinki-NLP/opus-mt-{src_mapped}-{target_lang}",
f"Helsinki-NLP/opus-mt-{source_lang}-{tgt_mapped}"
]
# For specific language groups, try group models
if target_lang == 'en':
# Many-to-English models
group_patterns = [
f"Helsinki-NLP/opus-mt-mul-{target_lang}",
f"Helsinki-NLP/opus-mt-roa-{target_lang}", # Romance languages
f"Helsinki-NLP/opus-mt-gem-{target_lang}", # Germanic languages
f"Helsinki-NLP/opus-mt-sla-{target_lang}", # Slavic languages
]
model_patterns.extend(group_patterns)
# Return the first pattern (most specific)
return model_patterns[0] if model_patterns else None
def _load_opus_mt_model(self, model_name: str) -> Tuple[MarianMTModel, MarianTokenizer]:
"""Load Helsinki-NLP Opus-MT model with caching."""
current_time = time.time()
# Check if model is already in cache
if model_name in self.model_cache:
model, tokenizer, _ = self.model_cache[model_name]
# Update last used time
self.model_cache[model_name] = (model, tokenizer, current_time)
logger.debug(f"Using cached model: {model_name}")
return model, tokenizer
# Clean cache if it's full
if len(self.model_cache) >= self.cache_size:
self._clean_model_cache()
try:
logger.info(f"Loading model: {model_name}")
# Load model and tokenizer
model = MarianMTModel.from_pretrained(
model_name,
cache_dir=self.model_cache_dir
).to(self.device)
tokenizer = MarianTokenizer.from_pretrained(
model_name,
cache_dir=self.model_cache_dir
)
# Add to cache
self.model_cache[model_name] = (model, tokenizer, current_time)
logger.info(f"Model loaded and cached: {model_name}")
return model, tokenizer
except Exception as e:
logger.warning(f"Failed to load model {model_name}: {e}")
raise
def _clean_model_cache(self):
"""Remove least recently used model from cache."""
if not self.model_cache:
return
# Find least recently used model
lru_model = min(self.model_cache.items(), key=lambda x: x[1][2])
model_name = lru_model[0]
# Remove from cache and free memory
model, tokenizer, _ = self.model_cache.pop(model_name)
del model, tokenizer
# Force garbage collection
if self.device.type == 'cuda':
torch.cuda.empty_cache()
gc.collect()
logger.debug(f"Removed model from cache: {model_name}")
def _translate_with_opus_mt(self,
text: str,
source_language: str,
target_language: str,
model_name: str) -> TranslationResult:
"""Translate text using Helsinki-NLP Opus-MT model."""
try:
model, tokenizer = self._load_opus_mt_model(model_name)
# Tokenize and translate
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=512,
num_beams=4,
early_stopping=True,
do_sample=False
)
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return TranslationResult(
original_text=text,
translated_text=translated_text,
source_language=source_language,
target_language=target_language,
confidence=0.9, # Opus-MT models generally have good confidence
model_used=model_name
)
except Exception as e:
logger.error(f"Opus-MT translation failed: {e}")
raise
def _translate_batch_opus_mt(self,
texts: List[str],
source_language: str,
target_language: str,
model_name: str) -> List[TranslationResult]:
"""Translate batch using Helsinki-NLP Opus-MT model."""
try:
model, tokenizer = self._load_opus_mt_model(model_name)
# Tokenize batch
inputs = tokenizer(
texts,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=512,
num_beams=4,
early_stopping=True,
do_sample=False
)
# Decode all outputs
translated_texts = [
tokenizer.decode(output, skip_special_tokens=True)
for output in outputs
]
# Create results
results = []
for original, translated in zip(texts, translated_texts):
results.append(TranslationResult(
original_text=original,
translated_text=translated,
source_language=source_language,
target_language=target_language,
confidence=0.9,
model_used=model_name
))
return results
except Exception as e:
logger.error(f"Opus-MT batch translation failed: {e}")
raise
def _translate_with_fallback(self,
text: str,
source_language: str,
target_language: str) -> TranslationResult:
"""Translate using multilingual fallback model."""
try:
if self.fallback_model_name == "mbart50":
return self._translate_with_mbart50(text, source_language, target_language)
elif self.fallback_model_name == "m2m100":
return self._translate_with_m2m100(text, source_language, target_language)
else:
raise ValueError("No fallback model available")
except Exception as e:
logger.error(f"Fallback translation failed: {e}")
raise
def _translate_batch_fallback(self,
texts: List[str],
source_language: str,
target_language: str) -> List[TranslationResult]:
"""Translate batch using multilingual fallback model."""
try:
if self.fallback_model_name == "mbart50":
return self._translate_batch_mbart50(texts, source_language, target_language)
elif self.fallback_model_name == "m2m100":
return self._translate_batch_m2m100(texts, source_language, target_language)
else:
raise ValueError("No fallback model available")
except Exception as e:
logger.error(f"Fallback batch translation failed: {e}")
raise
def _translate_with_mbart50(self,
text: str,
source_language: str,
target_language: str) -> TranslationResult:
"""Translate using mBART50 model."""
# Set source language
self.fallback_tokenizer.src_lang = source_language
inputs = self.fallback_tokenizer(text, return_tensors="pt")
inputs = {k: v.to(self.device) for k, v in inputs.items()}
# Generate translation
with torch.no_grad():
generated_tokens = self.fallback_model.generate(
**inputs,
forced_bos_token_id=self.fallback_tokenizer.lang_code_to_id[target_language],
max_length=512,
num_beams=4,
early_stopping=True
)
translated_text = self.fallback_tokenizer.batch_decode(
generated_tokens, skip_special_tokens=True
)[0]
return TranslationResult(
original_text=text,
translated_text=translated_text,
source_language=source_language,
target_language=target_language,
confidence=0.85,
model_used="mbart50"
)
def _translate_batch_mbart50(self,
texts: List[str],
source_language: str,
target_language: str) -> List[TranslationResult]:
"""Translate batch using mBART50 model."""
# Set source language
self.fallback_tokenizer.src_lang = source_language
inputs = self.fallback_tokenizer(
texts, return_tensors="pt", padding=True, truncation=True
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
# Generate translations
with torch.no_grad():
generated_tokens = self.fallback_model.generate(
**inputs,
forced_bos_token_id=self.fallback_tokenizer.lang_code_to_id[target_language],
max_length=512,
num_beams=4,
early_stopping=True
)
translated_texts = self.fallback_tokenizer.batch_decode(
generated_tokens, skip_special_tokens=True
)
return [
TranslationResult(
original_text=original,
translated_text=translated,
source_language=source_language,
target_language=target_language,
confidence=0.85,
model_used="mbart50"
)
for original, translated in zip(texts, translated_texts)
]
def _translate_with_m2m100(self,
text: str,
source_language: str,
target_language: str) -> TranslationResult:
"""Translate using M2M-100 model."""
self.fallback_tokenizer.src_lang = source_language
inputs = self.fallback_tokenizer(text, return_tensors="pt")
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
generated_tokens = self.fallback_model.generate(
**inputs,
forced_bos_token_id=self.fallback_tokenizer.get_lang_id(target_language),
max_length=512,
num_beams=4,
early_stopping=True
)
translated_text = self.fallback_tokenizer.batch_decode(
generated_tokens, skip_special_tokens=True
)[0]
return TranslationResult(
original_text=text,
translated_text=translated_text,
source_language=source_language,
target_language=target_language,
confidence=0.87,
model_used="m2m100"
)
def _translate_batch_m2m100(self,
texts: List[str],
source_language: str,
target_language: str) -> List[TranslationResult]:
"""Translate batch using M2M-100 model."""
self.fallback_tokenizer.src_lang = source_language
inputs = self.fallback_tokenizer(
texts, return_tensors="pt", padding=True, truncation=True
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
generated_tokens = self.fallback_model.generate(
**inputs,
forced_bos_token_id=self.fallback_tokenizer.get_lang_id(target_language),
max_length=512,
num_beams=4,
early_stopping=True
)
translated_texts = self.fallback_tokenizer.batch_decode(
generated_tokens, skip_special_tokens=True
)
return [
TranslationResult(
original_text=original,
translated_text=translated,
source_language=source_language,
target_language=target_language,
confidence=0.87,
model_used="m2m100"
)
for original, translated in zip(texts, translated_texts)
]
def get_supported_languages(self) -> List[str]:
"""Get list of supported source languages."""
# Combined support from Helsinki-NLP and fallback models
opus_mt_languages = list(self.language_mapping.keys())
# mBART50 supported languages
mbart_languages = [
'ar', 'cs', 'de', 'en', 'es', 'et', 'fi', 'fr', 'gu', 'hi', 'it', 'ja',
'kk', 'ko', 'lt', 'lv', 'my', 'ne', 'nl', 'ro', 'ru', 'si', 'tr', 'vi',
'zh', 'af', 'az', 'bn', 'fa', 'he', 'hr', 'id', 'ka', 'km', 'mk', 'ml',
'mn', 'mr', 'pl', 'ps', 'pt', 'sv', 'sw', 'ta', 'te', 'th', 'tl', 'uk',
'ur', 'xh', 'gl', 'sl'
]
# M2M-100 has 100 languages, include major ones
m2m_additional = [
'am', 'cy', 'is', 'mg', 'mt', 'so', 'zu', 'ha', 'ig', 'yo', 'lg', 'ln',
'rn', 'sn', 'tn', 'ts', 've', 'xh', 'zu'
]
all_languages = set(opus_mt_languages + mbart_languages + m2m_additional)
return sorted(list(all_languages))
def clear_cache(self):
"""Clear all cached models to free memory."""
logger.info("Clearing model cache...")
for model_name, (model, tokenizer, _) in self.model_cache.items():
del model, tokenizer
self.model_cache.clear()
if self.device.type == 'cuda':
torch.cuda.empty_cache()
gc.collect()
logger.info("Model cache cleared")
def get_cache_info(self) -> Dict[str, any]:
"""Get information about cached models."""
return {
'cached_models': list(self.model_cache.keys()),
'cache_size': len(self.model_cache),
'max_cache_size': self.cache_size,
'fallback_model': self.fallback_model_name,
'device': str(self.device)
}
def __del__(self):
"""Cleanup resources when the object is destroyed."""
try:
self.clear_cache()
except Exception:
pass
# Convenience function for easy usage
def translate_text(text: str,
source_language: str,
target_language: str = "en",
device: Optional[str] = None) -> TranslationResult:
"""
Convenience function to translate text with default settings.
Args:
text (str): Text to translate
source_language (str): Source language code
target_language (str): Target language code (default: 'en')
device (str, optional): Device to run on ('cpu', 'cuda', 'auto')
Returns:
TranslationResult: Translation result
Example:
>>> # Translate from French to English
>>> result = translate_text("Bonjour le monde", "fr", "en")
>>> print(result.translated_text) # "Hello world"
>>>
>>> # Translate from Hindi to English
>>> result = translate_text("नमस्ते", "hi", "en")
>>> print(result.translated_text) # "Hello"
"""
translator = NeuralTranslator(
target_language=target_language,
device=device
)
return translator.translate_text(text, source_language, target_language)
# Example usage and testing
if __name__ == "__main__":
import sys
import argparse
import json
def main():
"""Command line interface for testing neural translation."""
parser = argparse.ArgumentParser(description="Neural Machine Translation Tool")
parser.add_argument("text", help="Text to translate")
parser.add_argument("--source-lang", "-s", required=True,
help="Source language code")
parser.add_argument("--target-lang", "-t", default="en",
help="Target language code (default: en)")
parser.add_argument("--device", choices=["cpu", "cuda", "auto"], default="auto",
help="Device to run on")
parser.add_argument("--batch-size", type=int, default=8,
help="Batch size for multiple texts")
parser.add_argument("--output-format", choices=["json", "text"],
default="text", help="Output format")
parser.add_argument("--list-languages", action="store_true",
help="List supported languages")
parser.add_argument("--benchmark", action="store_true",
help="Run translation benchmark")
parser.add_argument("--verbose", "-v", action="store_true",
help="Enable verbose logging")
args = parser.parse_args()
if args.verbose:
logging.getLogger().setLevel(logging.DEBUG)
try:
translator = NeuralTranslator(
target_language=args.target_lang,
device=args.device
)
if args.list_languages:
languages = translator.get_supported_languages()
print("Supported languages:")
for i, lang in enumerate(languages):
print(f"{lang:>4}", end=" ")
if (i + 1) % 10 == 0:
print()
if len(languages) % 10 != 0:
print()
return
if args.benchmark:
print("=== TRANSLATION BENCHMARK ===")
test_texts = [
"Hello, how are you?",
"This is a longer sentence to test translation quality.",
"Machine translation has improved significantly."
]
start_time = time.time()
results = translator.translate_batch(
test_texts,
[args.source_lang] * len(test_texts),
args.target_lang
)
total_time = time.time() - start_time
print(f"Translated {len(test_texts)} texts in {total_time:.2f}s")
print(f"Average time per text: {total_time/len(test_texts):.3f}s")
print()
# Translate the input text
result = translator.translate_text(
args.text, args.source_lang, args.target_lang
)
# Output results
if args.output_format == "json":
print(json.dumps(result.to_dict(), indent=2, ensure_ascii=False))
else:
print(f"=== TRANSLATION RESULT ===")
print(f"Source ({result.source_language}): {result.original_text}")
print(f"Target ({result.target_language}): {result.translated_text}")
print(f"Model used: {result.model_used}")
print(f"Confidence: {result.confidence:.2f}")
print(f"Processing time: {result.processing_time:.3f}s")
if args.verbose:
cache_info = translator.get_cache_info()
print(f"\nCache info: {cache_info}")
except Exception as e:
print(f"Error: {e}", file=sys.stderr)
sys.exit(1)
# Run CLI if script is executed directly
if not TRANSFORMERS_AVAILABLE:
print("Warning: transformers not available. Install with: pip install transformers")
print("Running in demo mode...")
# Create dummy result for testing
dummy_result = TranslationResult(
original_text="Bonjour le monde",
translated_text="Hello world",
source_language="fr",
target_language="en",
confidence=0.95,
model_used="demo",
processing_time=0.123
)
print("\n=== DEMO OUTPUT (transformers not available) ===")
print(f"Source (fr): {dummy_result.original_text}")
print(f"Target (en): {dummy_result.translated_text}")
print(f"Confidence: {dummy_result.confidence:.2f}")
else:
main()