File size: 2,221 Bytes
47454a7
 
 
 
 
 
 
0791989
122e2c3
 
 
75c37a0
 
 
122e2c3
47454a7
75c37a0
 
47454a7
122e2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
47454a7
75c37a0
122e2c3
 
 
 
 
 
 
 
 
 
 
 
75c37a0
 
122e2c3
47454a7
122e2c3
 
 
 
47454a7
122e2c3
47454a7
122e2c3
 
 
 
 
47454a7
 
122e2c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# -*- coding: utf-8 -*-
"""gen ai project f.ipynb
Automatically generated by Colab.
Original file is located at
    https://colab.research.google.com/drive/1iF7hdOjWNeFUtGvUYdaFsBErJGnY1h5J
"""

import os
from transformers import MarianMTModel, MarianTokenizer
import gradio as gr
from PIL import Image, UnidentifiedImageError
import requests
import io

# Load translation models
model_name = "Helsinki-NLP/opus-mt-mul-en"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)

# Define language map
language_map = {
    "Tamil": "ta",
    "Russian": "rus"
}

def translate_text(input_text, selected_language):
    lang_code = language_map[selected_language]
    lang_prefix = f">>{lang_code}<< "
    text_with_lang = lang_prefix + input_text
    inputs = tokenizer(text_with_lang, return_tensors="pt", padding=True)
    translated_tokens = model.generate(**inputs)
    translation = tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
    return translation

def generate_image(prompt):
    API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
    hf_token = os.getenv("HF_TOKEN")
    headers = {"Authorization": f"Bearer {hf_token}"}
    
    response = requests.post(API_URL, headers=headers, json={"inputs": prompt})

    if response.status_code == 200:
        image_bytes = response.content
        try:
            image = Image.open(io.BytesIO(image_bytes))
            return image
        except UnidentifiedImageError:
            return None
    else:
        return None

def process_input(text_input, selected_language):
    translated_output = translate_text(text_input, selected_language)
    image = generate_image(translated_output)
    return translated_output, image

# Gradio interface
interface = gr.Interface(
    fn=process_input,
    inputs=[gr.Textbox(label="Input Text"), gr.CheckboxGroup(choices=["Tamil", "Russian"], label="Select Language")],
    outputs=[gr.Textbox(label="Translated Text"), gr.Image(label="Generated Image")],
    title="Multilingual Translation and Image Generation",
    description="Translate Tamil or Russian text to English and generate an image."
)

interface.launch()