Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,20 +10,17 @@ model_name = "Helsinki-NLP/opus-mt-mul-en"
|
|
10 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
11 |
model = MarianMTModel.from_pretrained(model_name)
|
12 |
|
13 |
-
# Load GPT-Neo model for creative
|
14 |
gpt_neo_model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B")
|
15 |
gpt_neo_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
|
16 |
|
17 |
-
# Define language map
|
18 |
language_map = {
|
19 |
"Tamil": "ta",
|
20 |
-
"Russian": "rus"
|
21 |
-
"Arabic": "ar",
|
22 |
-
"Portuguese": "pt"
|
23 |
}
|
24 |
|
25 |
def translate_text(input_text, selected_languages):
|
26 |
-
"""Translate input text into English based on the selected language."""
|
27 |
if not selected_languages:
|
28 |
return "Please select at least one language."
|
29 |
|
@@ -32,16 +29,13 @@ def translate_text(input_text, selected_languages):
|
|
32 |
lang_prefix = f">>{lang_code}<< "
|
33 |
text_with_lang = lang_prefix + input_text
|
34 |
inputs = tokenizer(text_with_lang, return_tensors="pt", padding=True)
|
35 |
-
|
36 |
-
# Generate translated tokens
|
37 |
translated_tokens = model.generate(**inputs)
|
38 |
translation = tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
|
39 |
return translation
|
40 |
|
41 |
def generate_image(prompt):
|
42 |
-
"""Generate an image based on the provided prompt."""
|
43 |
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
|
44 |
-
hf_token = os.getenv("HF_TOKEN")
|
45 |
headers = {"Authorization": f"Bearer {hf_token}"}
|
46 |
|
47 |
response = requests.post(API_URL, headers=headers, json={"inputs": prompt})
|
@@ -57,17 +51,13 @@ def generate_image(prompt):
|
|
57 |
return None
|
58 |
|
59 |
def generate_creative_text(translated_text):
|
60 |
-
"
|
61 |
-
prompt = f"Create a creative text based on the following sentence: {translated_text}"
|
62 |
inputs = gpt_neo_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=100)
|
63 |
-
|
64 |
-
# Generate creative text
|
65 |
-
output = gpt_neo_model.generate(inputs["input_ids"], max_length=100, do_sample=True, temperature=0.7)
|
66 |
creative_text = gpt_neo_tokenizer.decode(output[0], skip_special_tokens=True)
|
67 |
return creative_text
|
68 |
|
69 |
def process_input(text_input, selected_languages):
|
70 |
-
"""Process the input text: translate, generate creative text, and generate an image."""
|
71 |
translated_output = translate_text(text_input, selected_languages)
|
72 |
creative_text = generate_creative_text(translated_output)
|
73 |
image = generate_image(translated_output)
|
@@ -77,16 +67,16 @@ def process_input(text_input, selected_languages):
|
|
77 |
interface = gr.Interface(
|
78 |
fn=process_input,
|
79 |
inputs=[
|
80 |
-
gr.Textbox(label="Input Text"),
|
81 |
-
gr.CheckboxGroup(choices=["Tamil", "Russian"
|
82 |
],
|
83 |
outputs=[
|
84 |
-
gr.Textbox(label="Translated Text"),
|
85 |
-
gr.Textbox(label="Creative Text"),
|
86 |
gr.Image(label="Generated Image")
|
87 |
],
|
88 |
-
title="Multilingual Translation
|
89 |
-
description="Translate Tamil
|
90 |
)
|
91 |
|
92 |
interface.launch()
|
|
|
10 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
11 |
model = MarianMTModel.from_pretrained(model_name)
|
12 |
|
13 |
+
# Load GPT-Neo model for creative content generation
|
14 |
gpt_neo_model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B")
|
15 |
gpt_neo_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
|
16 |
|
17 |
+
# Define language map
|
18 |
language_map = {
|
19 |
"Tamil": "ta",
|
20 |
+
"Russian": "rus"
|
|
|
|
|
21 |
}
|
22 |
|
23 |
def translate_text(input_text, selected_languages):
|
|
|
24 |
if not selected_languages:
|
25 |
return "Please select at least one language."
|
26 |
|
|
|
29 |
lang_prefix = f">>{lang_code}<< "
|
30 |
text_with_lang = lang_prefix + input_text
|
31 |
inputs = tokenizer(text_with_lang, return_tensors="pt", padding=True)
|
|
|
|
|
32 |
translated_tokens = model.generate(**inputs)
|
33 |
translation = tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
|
34 |
return translation
|
35 |
|
36 |
def generate_image(prompt):
|
|
|
37 |
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
|
38 |
+
hf_token = os.getenv("HF_TOKEN")
|
39 |
headers = {"Authorization": f"Bearer {hf_token}"}
|
40 |
|
41 |
response = requests.post(API_URL, headers=headers, json={"inputs": prompt})
|
|
|
51 |
return None
|
52 |
|
53 |
def generate_creative_text(translated_text):
|
54 |
+
prompt = f"Create a creative story based on the following sentence: {translated_text}"
|
|
|
55 |
inputs = gpt_neo_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=100)
|
56 |
+
output = gpt_neo_model.generate(inputs["input_ids"], max_length=150, do_sample=True, temperature=0.7)
|
|
|
|
|
57 |
creative_text = gpt_neo_tokenizer.decode(output[0], skip_special_tokens=True)
|
58 |
return creative_text
|
59 |
|
60 |
def process_input(text_input, selected_languages):
|
|
|
61 |
translated_output = translate_text(text_input, selected_languages)
|
62 |
creative_text = generate_creative_text(translated_output)
|
63 |
image = generate_image(translated_output)
|
|
|
67 |
interface = gr.Interface(
|
68 |
fn=process_input,
|
69 |
inputs=[
|
70 |
+
gr.Textbox(label="Input Text"),
|
71 |
+
gr.CheckboxGroup(choices=["Tamil", "Russian"], label="Select Language")
|
72 |
],
|
73 |
outputs=[
|
74 |
+
gr.Textbox(label="Translated Text"),
|
75 |
+
gr.Textbox(label="Creative Text"),
|
76 |
gr.Image(label="Generated Image")
|
77 |
],
|
78 |
+
title="Multilingual Translation and Image Generation",
|
79 |
+
description="Translate Tamil or Russian text to English, generate creative content, and create an image."
|
80 |
)
|
81 |
|
82 |
interface.launch()
|