Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,82 +1,102 @@
|
|
1 |
import os
|
2 |
-
from
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import requests
|
6 |
import io
|
|
|
|
|
|
|
7 |
|
8 |
-
# Load translation model
|
9 |
model_name = "Helsinki-NLP/opus-mt-mul-en"
|
10 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
11 |
model = MarianMTModel.from_pretrained(model_name)
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
lang_code = language_map[selected_language]
|
29 |
-
lang_prefix = f">>{lang_code}<< "
|
30 |
-
text_with_lang = lang_prefix + input_text
|
31 |
-
inputs = tokenizer(text_with_lang, return_tensors="pt", padding=True)
|
32 |
-
translated_tokens = model.generate(**inputs)
|
33 |
-
translation = tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
|
34 |
-
return translation
|
35 |
|
|
|
36 |
def generate_image(prompt):
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
49 |
return None
|
50 |
-
|
|
|
51 |
return None
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
def generate_creative_text(translated_text):
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
creative_text = gpt_neo_tokenizer.decode(output[0], skip_special_tokens=True)
|
58 |
return creative_text
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
# Gradio interface
|
67 |
interface = gr.Interface(
|
68 |
-
fn=
|
69 |
-
inputs=
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
outputs=[
|
74 |
-
gr.Textbox(label="Translated Text"),
|
75 |
-
gr.Textbox(label="Creative Text"),
|
76 |
-
gr.Image(label="Generated Image")
|
77 |
-
],
|
78 |
-
title="Multilingual Translation and Image Generation",
|
79 |
-
description="Translate Tamil or Russian text to English, generate creative content, and create an image."
|
80 |
)
|
81 |
|
|
|
82 |
interface.launch()
|
|
|
1 |
import os
|
2 |
+
from huggingface_hub import login
|
3 |
+
# Retrieve the actual token from the environment variable
|
4 |
+
hf_token = os.getenv("HF_TOKEN")
|
5 |
+
|
6 |
+
# Check if the token is retrieved properly
|
7 |
+
if hf_token:
|
8 |
+
# Use the retrieved token
|
9 |
+
login(token=hf_token, add_to_git_credential=True)
|
10 |
+
else:
|
11 |
+
raise ValueError("Hugging Face token not found in environment variables.")
|
12 |
+
|
13 |
+
# Import necessary libraries
|
14 |
+
from transformers import MarianMTModel, MarianTokenizer, pipeline
|
15 |
import requests
|
16 |
import io
|
17 |
+
from PIL import Image
|
18 |
+
import matplotlib.pyplot as plt
|
19 |
+
import gradio as gr
|
20 |
|
21 |
+
# Load the translation model and tokenizer
|
22 |
model_name = "Helsinki-NLP/opus-mt-mul-en"
|
23 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
24 |
model = MarianMTModel.from_pretrained(model_name)
|
25 |
|
26 |
+
# Create a translation pipeline
|
27 |
+
translator = pipeline("translation", model=model, tokenizer=tokenizer)
|
28 |
+
|
29 |
+
# Function for translation
|
30 |
+
def translate_text(tamil_text):
|
31 |
+
try:
|
32 |
+
translation = translator(tamil_text, max_length=40)
|
33 |
+
translated_text = translation[0]['translation_text']
|
34 |
+
return translated_text
|
35 |
+
except Exception as e:
|
36 |
+
return f"An error occurred: {str(e)}"
|
37 |
+
|
38 |
+
# API credentials and endpoint
|
39 |
+
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
|
40 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
# Function to send payload and generate image
|
43 |
def generate_image(prompt):
|
44 |
+
try:
|
45 |
+
response = requests.post(API_URL, headers=headers, json={"inputs": prompt})
|
46 |
+
|
47 |
+
# Check if the response is successful
|
48 |
+
if response.status_code == 200:
|
49 |
+
print("API call successful, generating image...")
|
50 |
+
image_bytes = response.content
|
51 |
+
# Try opening the image
|
52 |
+
try:
|
53 |
+
image = Image.open(io.BytesIO(image_bytes))
|
54 |
+
return image
|
55 |
+
except Exception as e:
|
56 |
+
print(f"Error opening image: {e}")
|
57 |
+
return None
|
58 |
+
else:
|
59 |
+
print(f"Failed to get image: Status code {response.status_code}")
|
60 |
+
print("Response content:", response.text) # Print response for debugging
|
61 |
return None
|
62 |
+
except Exception as e:
|
63 |
+
print(f"An error occurred: {e}")
|
64 |
return None
|
65 |
|
66 |
+
# Load GPT-Neo model for creative text generation
|
67 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
68 |
+
|
69 |
+
gpt_neo_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
|
70 |
+
gpt_neo_model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M")
|
71 |
+
|
72 |
+
# Function to generate creative text based on translated text
|
73 |
def generate_creative_text(translated_text):
|
74 |
+
input_ids = gpt_neo_tokenizer(translated_text, return_tensors='pt').input_ids
|
75 |
+
generated_text_ids = gpt_neo_model.generate(input_ids, max_length=100)
|
76 |
+
creative_text = gpt_neo_tokenizer.decode(generated_text_ids[0], skip_special_tokens=True)
|
|
|
77 |
return creative_text
|
78 |
|
79 |
+
# Function to handle the full workflow
|
80 |
+
def translate_generate_image_and_text(tamil_text):
|
81 |
+
# Step 1: Translate Tamil text to English
|
82 |
+
translated_text = translate_text(tamil_text)
|
83 |
+
|
84 |
+
# Step 2: Generate an image based on the translated text
|
85 |
+
image = generate_image(translated_text)
|
86 |
+
|
87 |
+
# Step 3: Generate creative text based on the translated text
|
88 |
+
creative_text = generate_creative_text(translated_text)
|
89 |
+
|
90 |
+
return translated_text, creative_text, image
|
91 |
|
92 |
+
# Create Gradio interface
|
93 |
interface = gr.Interface(
|
94 |
+
fn=translate_generate_image_and_text,
|
95 |
+
inputs="text",
|
96 |
+
outputs=["text", "text", "image"],
|
97 |
+
title="Tamil to English Translation, Image Generation & Creative Text",
|
98 |
+
description="Enter Tamil text to translate to English, generate an image, and create creative text based on the translation."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
)
|
100 |
|
101 |
+
# Launch Gradio app
|
102 |
interface.launch()
|