Spaces:
Sleeping
Sleeping
File size: 1,512 Bytes
f30b843 629e04f 602e80d 608498c 4f56a4b ed4af8f 83cd235 602e80d 629e04f 602e80d ed4af8f 602e80d 629e04f 602e80d 26dbd13 602e80d 26dbd13 602e80d ed4af8f 602e80d 629e04f 5c86456 ed4af8f 602e80d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import gradio as gr
from transformers import pipeline
from datasets import load_dataset
import torch
import numpy as np
# Load BLIP model for image captioning
caption_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
# Load SpeechT5 model for text-to-speech
synthesiser = pipeline("text-to-speech", model="microsoft/speecht5_tts")
# Load speaker embedding once
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
def process_image(image):
try:
# Generate caption from the image
caption = caption_model(image)[0]['generated_text']
# Convert caption to speech
speech = synthesiser(
caption,
forward_params={"speaker_embeddings": speaker_embedding}
)
# Prepare audio data
audio = np.array(speech["audio"])
rate = speech["sampling_rate"]
# Return both audio and caption
return (rate, audio), caption
except Exception as e:
return None, f"Error: {str(e)}"
# Gradio Interface
iface = gr.Interface(
fn=process_image,
inputs=gr.Image(type='pil', label="Upload an Image"),
outputs=[
gr.Audio(label="Generated Audio"),
gr.Textbox(label="Generated Caption")
],
title="SeeSay",
description="Upload an image to generate a caption and hear it described with SpeechT5's speech synthesis."
)
iface.launch()
|