|
import os |
|
import re |
|
import itertools |
|
import random |
|
import requests |
|
import numpy as np |
|
import gradio as gr |
|
from newspaper import Article, fulltext |
|
from nltk.tokenize import sent_tokenize |
|
from sentence_transformers import SentenceTransformer, util, models |
|
from sklearn.cluster import KMeans |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
from sklearn.metrics import silhouette_score |
|
import spacy |
|
import en_core_sci_lg |
|
import inflect |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline |
|
import torch |
|
|
|
import networkx as nx |
|
|
|
import xml.etree.ElementTree as ET |
|
|
|
|
|
NLI_MODEL_NAME = "pritamdeka/PubMedBERT-MNLI-MedNLI" |
|
NLI_LABELS = ['CONTRADICTION', 'NEUTRAL', 'ENTAILMENT'] |
|
PUBMED_N = 100 |
|
TOP_ABSTRACTS = 10 |
|
|
|
|
|
model_options = { |
|
"Llama-3.2-1B-Instruct (Meta, gated)": "meta-llama/Llama-3.2-1B-Instruct", |
|
"Gemma-3-1B-it (Google, gated)": "google/gemma-3-1b-it", |
|
"TinyLlama-1.1B-Chat (Open)": "TinyLlama/TinyLlama-1.1B-Chat-v1.0" |
|
} |
|
pipe_cache = {} |
|
|
|
|
|
nli_tokenizer = AutoTokenizer.from_pretrained(NLI_MODEL_NAME) |
|
nli_model = AutoModelForSequenceClassification.from_pretrained(NLI_MODEL_NAME) |
|
p = inflect.engine() |
|
nlp = en_core_sci_lg.load() |
|
sp = en_core_sci_lg.load() |
|
all_stopwords = sp.Defaults.stop_words |
|
|
|
indicator_phrases = [ |
|
|
|
"found that", "findings suggest", "shows that", "showed that", "demonstrated", "demonstrates", |
|
|
|
"according to", "a recent study", "researchers from" |
|
] |
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
|
|
|
|
def extract_claims_pattern(article_text): |
|
sentences = sent_tokenize(article_text) |
|
claims = [ |
|
s for s in sentences |
|
if any(phrase in s.lower() for phrase in indicator_phrases) |
|
or re.search(r"\b\d+(\.\d+)?%?\b", s) |
|
] |
|
return list(dict.fromkeys(claims)) |
|
|
|
def match_claims_to_headline(claims, headline, sbert_model): |
|
headline_emb = sbert_model.encode([headline]) |
|
claim_embs = sbert_model.encode(claims) |
|
sims = util.pytorch_cos_sim(headline_emb, claim_embs)[0] |
|
matched_claims = [claim for claim, sim in zip(claims, sims) if sim >= 0.6] |
|
if not matched_claims and claims: |
|
idxs = np.argsort(-sims.cpu().numpy())[:min(3, len(claims))] |
|
matched_claims = [claims[i] for i in idxs] |
|
return matched_claims |
|
|
|
def keyphrase_groups_and_query(article_text, max_num_keywords, model_1, model_2, model_3): |
|
|
|
corpus = sent_tokenize(article_text) |
|
indicator_list = indicator_phrases |
|
score_list, count_dict = [], {} |
|
for l in corpus: |
|
c = 0 |
|
for l2 in indicator_list: |
|
if l.find(l2) != -1: |
|
c = 1 |
|
break |
|
count_dict[l] = c |
|
for sent, score in count_dict.items(): |
|
score_list.append(score) |
|
clean_sentences_new = [re.sub("[^a-zA-Z]", " ", s) for s in corpus] |
|
corpus_embeddings = model_1.encode(clean_sentences_new) |
|
sim_mat = np.zeros([len(clean_sentences_new), len(clean_sentences_new)]) |
|
for i in range(len(clean_sentences_new)): |
|
len_embeddings = len(corpus_embeddings[i]) |
|
for j in range(len(clean_sentences_new)): |
|
if i != j: |
|
sim_mat[i][j] = cosine_similarity( |
|
corpus_embeddings[i].reshape(1, len_embeddings), |
|
corpus_embeddings[j].reshape(1, len_embeddings) |
|
)[0, 0] |
|
nx_graph = nx.from_numpy_array(sim_mat) |
|
scores = nx.pagerank(nx_graph, max_iter=1500) |
|
element = [scores[i] for i in range(len(corpus))] |
|
sum_list = [sc + lst for sc, lst in zip(score_list, element)] |
|
x = sorted(((sum_list[i], s) for i, s in enumerate(corpus)), reverse=True) |
|
final_textrank_list = [elem[1] for elem in x] |
|
a = int((10 * len(final_textrank_list)) / 100.0) |
|
total = max(a, 5) |
|
document = [final_textrank_list[i] for i in range(total)] |
|
doc = " ".join(document) |
|
text_doc = [] |
|
for i in document: |
|
doc_1 = nlp(i) |
|
text_doc.append([X.text for X in doc_1.ents]) |
|
entity_list = [item for sublist in text_doc for item in sublist] |
|
entity_list = [word for word in entity_list if word not in all_stopwords] |
|
entity_list = [word_entity for word_entity in entity_list if not p.singular_noun(word_entity)] |
|
entity_list = list(dict.fromkeys(entity_list)) |
|
doc_embedding = model_2.encode([doc]) |
|
candidates = entity_list |
|
if not candidates: |
|
return "", [] |
|
candidate_embeddings = model_2.encode(candidates) |
|
distances = cosine_similarity(doc_embedding, candidate_embeddings) |
|
top_n = min(max_num_keywords, len(candidates)) |
|
keyword_list = [candidates[index] for index in distances.argsort()[0][-top_n:]] |
|
|
|
word_embedding_model = models.Transformer(model_3) |
|
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), |
|
pooling_mode_mean_tokens=True, |
|
pooling_mode_cls_token=False, |
|
pooling_mode_max_tokens=False) |
|
embedder = SentenceTransformer(modules=[word_embedding_model, pooling_model]) |
|
c_len = len(keyword_list) |
|
if c_len < 2: |
|
return " OR ".join(keyword_list), keyword_list |
|
keyword_embeddings = embedder.encode(keyword_list) |
|
silhouette_score_list = [] |
|
cluster_list_final = [] |
|
for num_clusters in range(1, top_n): |
|
clustering_model = KMeans(n_clusters=num_clusters) |
|
clustering_model.fit(keyword_embeddings) |
|
cluster_assignment = clustering_model.labels_ |
|
clustered_sentences = [[] for _ in range(num_clusters)] |
|
for sentence_id, cluster_id in enumerate(cluster_assignment): |
|
clustered_sentences[cluster_id].append(keyword_list[sentence_id]) |
|
cl_sent_len = len(clustered_sentences) |
|
list_cluster = list(clustered_sentences) |
|
cluster_list_final.append(list_cluster) |
|
if (c_len == cl_sent_len and c_len >= 3) or cl_sent_len == 1: |
|
silhouette_avg = 0 |
|
elif c_len == cl_sent_len == 2: |
|
silhouette_avg = 1 |
|
else: |
|
silhouette_avg = silhouette_score(keyword_embeddings, cluster_assignment) |
|
silhouette_score_list.append(silhouette_avg) |
|
res_dict = dict(zip(silhouette_score_list, cluster_list_final)) |
|
cluster_items = res_dict[max(res_dict)] |
|
comb = [] |
|
for i in cluster_items: |
|
z = ' OR '.join(i) |
|
comb.append("(" + z + ")") |
|
combinations = [] |
|
for subset in itertools.combinations(comb, 2): |
|
combinations.append(subset) |
|
f1_list = [] |
|
for s in combinations: |
|
final = ' AND '.join(s) |
|
f1_list.append("(" + final + ")") |
|
f_1 = ' OR '.join(f1_list) |
|
return f_1, keyword_list |
|
|
|
def retrieve_pubmed_abstracts(article_text, headline, max_num_keywords, model_1, model_2, model_3): |
|
query, _ = keyphrase_groups_and_query(article_text, max_num_keywords, model_1, model_2, model_3) |
|
ncbi_url = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/' |
|
for q in [query, headline, article_text]: |
|
if not q: |
|
continue |
|
search_url = f"{ncbi_url}esearch.fcgi?db=pubmed&term={q}&retmax={PUBMED_N}&sort=relevance" |
|
r = requests.get(search_url) |
|
pmids = re.findall(r"<Id>(\d+)</Id>", r.text) |
|
if pmids: |
|
ids = ','.join(pmids) |
|
fetch_url = f"{ncbi_url}efetch.fcgi?db=pubmed&id={ids}&rettype=xml&retmax={PUBMED_N}" |
|
resp = requests.get(fetch_url) |
|
titles = re.findall(r"<ArticleTitle>(.*?)</ArticleTitle>", resp.text, flags=re.DOTALL) |
|
abstracts = re.findall(r"<AbstractText.*?>(.*?)</AbstractText>", resp.text, flags=re.DOTALL) |
|
if not abstracts: |
|
abstracts = [""] * len(titles) |
|
titles = [re.sub(r"\s+", " ", t).strip() for t in titles] |
|
abstracts = [re.sub(r"\s+", " ", a).strip() for a in abstracts] |
|
return titles, abstracts |
|
return [], [] |
|
|
|
def semantic_rerank_claim_abstracts(claim, titles, abstracts, model_4): |
|
doc_texts = [f"{t}. {a}" for t, a in zip(titles, abstracts)] |
|
doc_embs = model_4.encode(doc_texts) |
|
claim_emb = model_4.encode([claim]) |
|
sims = util.pytorch_cos_sim(claim_emb, doc_embs)[0] |
|
idxs = np.argsort(-sims.cpu().numpy())[:TOP_ABSTRACTS] |
|
return [titles[i] for i in idxs], [abstracts[i] for i in idxs] |
|
|
|
def extract_evidence_nli(claim, title, abstract): |
|
sentences = sent_tokenize(abstract) |
|
evidence = [] |
|
for sent in sentences: |
|
encoding = nli_tokenizer( |
|
sent, claim, |
|
return_tensors='pt', |
|
truncation=True, |
|
max_length=256, |
|
padding=True |
|
) |
|
with torch.no_grad(): |
|
outputs = nli_model(**encoding) |
|
probs = torch.softmax(outputs.logits, dim=1).cpu().numpy().flatten() |
|
max_idx = probs.argmax() |
|
label = NLI_LABELS[max_idx] |
|
score = float(probs[max_idx]) |
|
evidence.append({ |
|
"sentence": sent, |
|
"label": label, |
|
"score": score |
|
}) |
|
return evidence |
|
|
|
def get_summarizer(model_choice): |
|
model_id = model_options[model_choice] |
|
if model_id in pipe_cache: |
|
return pipe_cache[model_id] |
|
kwargs = { |
|
"model": model_id, |
|
"torch_dtype": torch.float16 if torch.cuda.is_available() else torch.float32, |
|
"device_map": "auto", |
|
"max_new_tokens": 128 |
|
} |
|
if any(gated in model_id for gated in ["meta-llama", "gemma"]): |
|
hf_token = os.environ.get("HF_TOKEN", None) |
|
if hf_token: |
|
kwargs["token"] = hf_token |
|
else: |
|
raise RuntimeError(f"Model '{model_choice}' requires a Hugging Face access token. Please set 'HF_TOKEN' as a Space secret or environment variable.") |
|
pipe_cache[model_id] = pipeline("text-generation", **kwargs) |
|
return pipe_cache[model_id] |
|
|
|
def summarize_evidence_llm(claim, evidence_list, model_choice): |
|
support = [ev['sentence'] for ev in evidence_list if ev['label'] == 'ENTAILMENT'] |
|
contradict = [ev['sentence'] for ev in evidence_list if ev['label'] == 'CONTRADICTION'] |
|
messages = [ |
|
{"role": "system", "content": "You are a helpful biomedical assistant. Summarize scientific evidence in plain English for the general public."}, |
|
{"role": "user", "content": |
|
f"Claim: {claim}\n" |
|
f"Supporting evidence:\n" + ("\n".join(support) if support else "None") + "\n" |
|
f"Contradicting evidence:\n" + ("\n".join(contradict) if contradict else "None") + "\n" |
|
"Explain to a layperson: Is this claim likely true, false, or uncertain based on the evidence above? Give a brief and simple explanation in 2-3 sentences." |
|
} |
|
] |
|
try: |
|
pipe = get_summarizer(model_choice) |
|
outputs = pipe( |
|
messages, |
|
max_new_tokens=96, |
|
do_sample=False, |
|
temperature=0.1, |
|
) |
|
out = outputs[0]["generated_text"] |
|
if isinstance(out, list) and "content" in out[-1]: |
|
return out[-1]["content"].strip() |
|
return out.strip() |
|
except Exception as e: |
|
return f"Summary could not be generated: {e}" |
|
|
|
def format_evidence_html(evidence_list): |
|
color_map = {"ENTAILMENT":"#e6ffe6", "CONTRADICTION":"#ffe6e6", "NEUTRAL":"#f8f8f8"} |
|
html = "" |
|
for ev in evidence_list: |
|
color = color_map[ev["label"]] |
|
html += ( |
|
f'<div style="background:{color};padding:6px;border-radius:6px;margin-bottom:3px">' |
|
f'<b>{ev["label"]}</b> (confidence {ev["score"]:.2f}): {ev["sentence"]}' |
|
'</div>' |
|
) |
|
return html |
|
|
|
def factcheck_app(article_url, model_1_name, model_2_name, max_num_keywords, model_3_name, model_4_name, summarizer_choice): |
|
try: |
|
art = Article(article_url) |
|
art.download() |
|
art.parse() |
|
text = art.text |
|
headline = art.title |
|
except Exception as e: |
|
return f"<b>Error downloading or reading article:</b> {e}", None |
|
|
|
|
|
model_1 = SentenceTransformer(model_1_name) |
|
model_2 = SentenceTransformer(model_2_name) |
|
model_3 = model_3_name |
|
model_4 = SentenceTransformer(model_4_name) |
|
|
|
claims = extract_claims_pattern(text) |
|
matched_claims = match_claims_to_headline(claims, headline, model_1) |
|
if not matched_claims: |
|
return "<b>No check-worthy claims found that match the headline.</b>", None |
|
|
|
results_html = "" |
|
all_results = [] |
|
for claim in matched_claims: |
|
titles, abstracts = retrieve_pubmed_abstracts(claim, headline, max_num_keywords, model_1, model_2, model_3) |
|
if not titles: |
|
results_html += f"<hr><b>Claim:</b> {claim}<br><i>No PubMed results found.</i><br>" |
|
all_results.append({"claim": claim, "summary": "No PubMed results found.", "evidence": []}) |
|
continue |
|
top_titles, top_abstracts = semantic_rerank_claim_abstracts(claim, titles, abstracts, model_4) |
|
idx_non_top = random.choice([i for i in range(len(titles)) if i not in [titles.index(t) for t in top_titles]]) if len(titles) > len(top_titles) else None |
|
evidence_results = [] |
|
for title, abstract in zip(top_titles, top_abstracts): |
|
evidence = extract_evidence_nli(claim, title, abstract) |
|
evidence_results.append({"title": title, "evidence": evidence}) |
|
if idx_non_top is not None: |
|
control_ev = extract_evidence_nli(claim, titles[idx_non_top], abstracts[idx_non_top]) |
|
evidence_results.append({"title": f"(Control) {titles[idx_non_top]}", "evidence": control_ev}) |
|
all_evidence_sentences = [ev for abs_res in evidence_results for ev in abs_res["evidence"]] |
|
summary = summarize_evidence_llm(claim, all_evidence_sentences, summarizer_choice) |
|
results_html += f"<hr><b>Claim:</b> {claim}<br><b>Layman summary:</b> {summary}<br>" |
|
for abs_res in evidence_results: |
|
results_html += f"<br><b>Abstract:</b> {abs_res['title']}<br>{format_evidence_html(abs_res['evidence'])}" |
|
all_results.append({"claim": claim, "summary": summary, "evidence": evidence_results}) |
|
return results_html, all_results |
|
|
|
|
|
description = """ |
|
<b>What does this app do?</b><br> |
|
This app extracts key scientific claims from a news article, finds the most relevant PubMed biomedical research papers using advanced keyphrase grouping and Boolean queries, checks which sentences in those papers support or contradict each claim, and gives you a plain-English summary verdict.<br><br> |
|
<b>How to use it:</b><br> |
|
1. Paste the link to a biomedical news article.<br> |
|
2. Choose your models for each stage (or use defaults for best results).<br> |
|
3. Pick a summarizer for layperson summary.<br> |
|
4. Wait for the results.<br> |
|
5. For each claim, you will see:<br> |
|
- A plain summary of what research says.<br> |
|
- Color-coded evidence sentences (green=support, red=contradict, gray=neutral).<br> |
|
- The titles of the most relevant PubMed articles.<br><br> |
|
<b>Everything is 100% open source and runs on this website—no personal info or cloud API needed.</b> |
|
""" |
|
|
|
iface = gr.Interface( |
|
fn=factcheck_app, |
|
inputs=[ |
|
gr.Textbox(lines=2, label="Paste a news article URL"), |
|
gr.Dropdown( |
|
choices=[ |
|
'sentence-transformers/all-mpnet-base-v2', |
|
'sentence-transformers/all-mpnet-base-v1', |
|
'sentence-transformers/all-distilroberta-v1', |
|
'sentence-transformers/gtr-t5-large', |
|
'pritamdeka/S-Bluebert-snli-multinli-stsb', |
|
'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb', |
|
'pritamdeka/S-BioBert-snli-multinli-stsb', |
|
'sentence-transformers/stsb-mpnet-base-v2', |
|
'sentence-transformers/stsb-roberta-base-v2', |
|
'sentence-transformers/stsb-distilroberta-base-v2', |
|
'sentence-transformers/sentence-t5-large', |
|
'sentence-transformers/sentence-t5-base' |
|
], |
|
value='sentence-transformers/all-mpnet-base-v2', |
|
label="SBERT model for TextRank" |
|
), |
|
gr.Dropdown( |
|
choices=[ |
|
'sentence-transformers/paraphrase-mpnet-base-v2', |
|
'sentence-transformers/all-mpnet-base-v1', |
|
'sentence-transformers/paraphrase-distilroberta-base-v1', |
|
'sentence-transformers/paraphrase-xlm-r-multilingual-v1', |
|
'sentence-transformers/paraphrase-multilingual-mpnet-base-v2', |
|
'sentence-transformers/paraphrase-albert-small-v2', |
|
'sentence-transformers/paraphrase-albert-base-v2', |
|
'sentence-transformers/paraphrase-MiniLM-L12-v2', |
|
'sentence-transformers/paraphrase-MiniLM-L6-v2', |
|
'sentence-transformers/all-MiniLM-L12-v2', |
|
'sentence-transformers/all-distilroberta-v1', |
|
'sentence-transformers/paraphrase-TinyBERT-L6-v2', |
|
'sentence-transformers/paraphrase-MiniLM-L3-v2', |
|
'sentence-transformers/all-MiniLM-L6-v2' |
|
], |
|
value='sentence-transformers/paraphrase-mpnet-base-v2', |
|
label="SBERT model for keyphrases" |
|
), |
|
gr.Slider(minimum=5, maximum=20, step=1, value=10, label="Max Keywords"), |
|
gr.Dropdown( |
|
choices=[ |
|
'cambridgeltl/SapBERT-from-PubMedBERT-fulltext', |
|
'cambridgeltl/SapBERT-from-PubMedBERT-fulltext-mean-token' |
|
], |
|
value='cambridgeltl/SapBERT-from-PubMedBERT-fulltext', |
|
label="SapBERT model for clustering" |
|
), |
|
gr.Dropdown( |
|
choices=[ |
|
'pritamdeka/S-Bluebert-snli-multinli-stsb', |
|
'pritamdeka/S-BioBert-snli-multinli-stsb', |
|
'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb', |
|
'sentence-transformers/all-mpnet-base-v2' |
|
], |
|
value='pritamdeka/S-BioBert-snli-multinli-stsb', |
|
label="SBERT model for abstracts" |
|
), |
|
gr.Dropdown( |
|
choices=list(model_options.keys()), |
|
value="TinyLlama-1.1B-Chat (Open)", |
|
label="Choose summarizer model" |
|
) |
|
], |
|
outputs=[gr.HTML(label="Fact-Check Results (Summary & Evidence)"), gr.JSON(label="All Results (JSON)")], |
|
title="BioMedical News Fact-Checking & Research Evidence Finder", |
|
description=description, |
|
examples=[[ |
|
"https://www.medicalnewstoday.com/articles/omicron-what-do-we-know-about-the-stealth-variant", |
|
'sentence-transformers/all-mpnet-base-v2', |
|
'sentence-transformers/paraphrase-mpnet-base-v2', |
|
10, |
|
'cambridgeltl/SapBERT-from-PubMedBERT-fulltext', |
|
'pritamdeka/S-BioBert-snli-multinli-stsb', |
|
"TinyLlama-1.1B-Chat (Open)" |
|
]], |
|
allow_flagging="never" |
|
) |
|
|
|
iface.launch(share=False, server_name='0.0.0.0', show_error=True) |
|
|