pritamdeka's picture
Update app.py
1db0637 verified
raw
history blame
11.5 kB
import os
import re
import random
import gradio as gr
import requests
import numpy as np
from nltk.tokenize import sent_tokenize
from newspaper import Article
from sentence_transformers import SentenceTransformer, util
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import torch
# --------- App settings ---------
PUBMED_N = 100 # Number of abstracts to retrieve initially
TOP_ABSTRACTS = 10 # Number of top semantic abstracts to keep per claim
NLI_MODEL_NAME = "pritamdeka/PubMedBERT-MNLI-MedNLI"
SBERT_MODEL_NAME = "pritamdeka/S-BioBert-snli-multinli-stsb"
NLI_LABELS = ['CONTRADICTION', 'NEUTRAL', 'ENTAILMENT']
# --------- Indicator Phrases for Claim Extraction ---------
indicator_phrases = [
"found that", "findings suggest", "shows that", "showed that", "demonstrated", "demonstrates",
"revealed", "reveals", "suggests", "suggested", "indicated", "indicates", "reported", "reports",
"was reported", "concluded", "concludes", "conclusion", "authors state", "stated", "data suggest",
"observed", "observes", "study suggests", "study shows", "study found", "researchers found",
"results indicate", "results show", "confirmed", "confirm", "confirming", "point to",
"documented", "document", "evidence of", "evidence suggests",
"associated with", "correlated with", "link between", "linked to", "relationship between",
"was linked", "connected to", "relationship with", "tied to", "association with",
"increase", "increases", "increased", "decrease", "decreases", "decreased",
"greater risk", "lower risk", "higher risk", "reduced risk", "raises the risk", "reduces the risk",
"risk of", "risk for", "likelihood of", "probability of", "chance of", "rate of", "incidence of",
"prevalence of", "mortality", "survival rate", "death rate", "odds of", "number of", "percentage of", "percent of",
"caused by", "causes", "cause", "resulted in", "results in", "leads to", "led to", "contributed to", "responsible for",
"due to", "as a result", "because of",
"randomized controlled trial", "RCT", "clinical trial", "participants", "enrolled", "sample size", "statistically significant",
"compared to", "compared with", "versus", "compared against",
"more than", "less than", "greater than", "lower than", "higher than", "significantly higher", "significantly lower",
"significantly increased", "significantly decreased", "significant difference",
"effect of", "impact of", "influence of", "predictor of", "predicts", "predictive of", "factor for", "determinant of",
"plays a role in", "contributes to", "related to", "affects", "influences", "difference between",
"according to", "a recent study", "researchers from"
]
# --------- Load models (global, once) ---------
nli_tokenizer = AutoTokenizer.from_pretrained(NLI_MODEL_NAME)
nli_model = AutoModelForSequenceClassification.from_pretrained(NLI_MODEL_NAME)
sbert_model = SentenceTransformer(SBERT_MODEL_NAME)
# --- Load fast Llama-3.2-1B-Instruct summarizer pipeline ---
model_id = "meta-llama/Llama-3.2-1B-Instruct"
pipe = pipeline(
"text-generation",
model=model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto",
max_new_tokens=128,
)
def extract_claims_pattern(article_text):
sentences = sent_tokenize(article_text)
claims = [
s for s in sentences
if any(phrase in s.lower() for phrase in indicator_phrases)
or re.search(r"\b\d+(\.\d+)?%?\b", s)
]
return list(dict.fromkeys(claims)) # deduplicate, preserve order
def match_claims_to_headline(claims, headline, threshold=0.6):
headline_emb = sbert_model.encode([headline])
claim_embs = sbert_model.encode(claims)
sims = util.pytorch_cos_sim(headline_emb, claim_embs)[0]
matched_claims = [claim for claim, sim in zip(claims, sims) if sim >= threshold]
# fallback: top 3 by similarity
if not matched_claims and claims:
idxs = np.argsort(-sims.cpu().numpy())[:min(3, len(claims))]
matched_claims = [claims[i] for i in idxs]
return matched_claims
def retrieve_pubmed_abstracts(claim, n=PUBMED_N):
ncbi_url = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/'
query = '+'.join(re.findall(r'\w+', claim))
search_url = f"{ncbi_url}esearch.fcgi?db=pubmed&term={query}&retmax={n}&sort=relevance"
r = requests.get(search_url)
pmids = re.findall(r"<Id>(\d+)</Id>", r.text)
if not pmids:
return [], []
ids = ','.join(pmids)
fetch_url = f"{ncbi_url}efetch.fcgi?db=pubmed&id={ids}&rettype=xml&retmax={n}"
resp = requests.get(fetch_url)
titles = re.findall(r"<ArticleTitle>(.*?)</ArticleTitle>", resp.text, flags=re.DOTALL)
abstracts = re.findall(r"<AbstractText.*?>(.*?)</AbstractText>", resp.text, flags=re.DOTALL)
if not abstracts:
abstracts = [""] * len(titles)
titles = [re.sub(r"\s+", " ", t).strip() for t in titles]
abstracts = [re.sub(r"\s+", " ", a).strip() for a in abstracts]
return titles, abstracts
def semantic_rerank_claim_abstracts(claim, titles, abstracts, top_k=TOP_ABSTRACTS):
doc_texts = [f"{t}. {a}" for t, a in zip(titles, abstracts)]
doc_embs = sbert_model.encode(doc_texts)
claim_emb = sbert_model.encode([claim])
sims = util.pytorch_cos_sim(claim_emb, doc_embs)[0]
idxs = np.argsort(-sims.cpu().numpy())[:top_k]
return [titles[i] for i in idxs], [abstracts[i] for i in idxs]
def extract_evidence_nli(claim, title, abstract):
sentences = sent_tokenize(abstract)
evidence = []
for sent in sentences:
encoding = nli_tokenizer(
sent, claim,
return_tensors='pt',
truncation=True,
max_length=256,
padding=True
)
with torch.no_grad():
outputs = nli_model(**encoding)
probs = torch.softmax(outputs.logits, dim=1).cpu().numpy().flatten()
max_idx = probs.argmax()
label = NLI_LABELS[max_idx]
score = float(probs[max_idx])
evidence.append({
"sentence": sent,
"label": label,
"score": score
})
return evidence
def summarize_evidence_llm(claim, evidence_list):
support = [ev['sentence'] for ev in evidence_list if ev['label'] == 'ENTAILMENT']
contradict = [ev['sentence'] for ev in evidence_list if ev['label'] == 'CONTRADICTION']
# Compose prompt for summarization.
messages = [
{"role": "system", "content": "You are a helpful biomedical assistant. Summarize scientific evidence in plain English for the general public."},
{"role": "user", "content":
f"Claim: {claim}\n"
f"Supporting evidence:\n" + ("\n".join(support) if support else "None") + "\n"
f"Contradicting evidence:\n" + ("\n".join(contradict) if contradict else "None") + "\n"
"Explain to a layperson: Is this claim likely true, false, or uncertain based on the evidence above? Give a brief and simple explanation in 2-3 sentences."
}
]
try:
outputs = pipe(
messages,
max_new_tokens=96,
do_sample=False,
temperature=0.1,
)
out = outputs[0]["generated_text"]
# If the model returns all messages, just take the last message (often the answer).
if isinstance(out, list) and "content" in out[-1]:
return out[-1]["content"].strip()
return out.strip()
except Exception as e:
return f"Summary could not be generated: {e}"
def format_evidence_html(evidence_list):
color_map = {"ENTAILMENT":"#e6ffe6", "CONTRADICTION":"#ffe6e6", "NEUTRAL":"#f8f8f8"}
html = ""
for ev in evidence_list:
color = color_map[ev["label"]]
html += (
f'<div style="background:{color};padding:6px;border-radius:6px;margin-bottom:3px">'
f'<b>{ev["label"]}</b> (confidence {ev["score"]:.2f}): {ev["sentence"]}'
'</div>'
)
return html
def factcheck_app(article_url):
try:
art = Article(article_url)
art.download()
art.parse()
text = art.text
headline = art.title
except Exception as e:
return f"<b>Error downloading or reading article:</b> {e}", None
claims = extract_claims_pattern(text)
matched_claims = match_claims_to_headline(claims, headline)
if not matched_claims:
return "<b>No check-worthy claims found that match the headline.</b>", None
results_html = ""
all_results = []
for claim in matched_claims:
titles, abstracts = retrieve_pubmed_abstracts(claim)
if not titles:
results_html += f"<hr><b>Claim:</b> {claim}<br><i>No PubMed results found.</i><br>"
all_results.append({"claim": claim, "summary": "No PubMed results found.", "evidence": []})
continue
top_titles, top_abstracts = semantic_rerank_claim_abstracts(claim, titles, abstracts)
idx_non_top = random.choice([i for i in range(len(titles)) if i not in [titles.index(t) for t in top_titles]]) if len(titles) > len(top_titles) else None
evidence_results = []
for title, abstract in zip(top_titles, top_abstracts):
evidence = extract_evidence_nli(claim, title, abstract)
evidence_results.append({"title": title, "evidence": evidence})
if idx_non_top is not None:
control_ev = extract_evidence_nli(claim, titles[idx_non_top], abstracts[idx_non_top])
evidence_results.append({"title": f"(Control) {titles[idx_non_top]}", "evidence": control_ev})
all_evidence_sentences = [ev for abs_res in evidence_results for ev in abs_res["evidence"]]
summary = summarize_evidence_llm(claim, all_evidence_sentences)
results_html += f"<hr><b>Claim:</b> {claim}<br><b>Layman summary:</b> {summary}<br>"
for abs_res in evidence_results:
results_html += f"<br><b>Abstract:</b> {abs_res['title']}<br>{format_evidence_html(abs_res['evidence'])}"
all_results.append({"claim": claim, "summary": summary, "evidence": evidence_results})
return results_html, all_results
description = """
<b>What does this app do?</b><br>
This app extracts key scientific claims from a news article, finds the most relevant PubMed biomedical research papers, checks which sentences in those papers support or contradict each claim, and gives you a plain-English summary verdict.<br><br>
<b>How to use it:</b><br>
1. Paste the link to a biomedical news article.<br>
2. Wait for the results.<br>
3. For each claim, you will see:<br>
- A plain summary of what research says.<br>
- Color-coded evidence sentences (green=support, red=contradict, gray=neutral).<br>
- The titles of the most relevant PubMed articles.<br><br>
<b>Everything is 100% open source and runs on this website—no personal info or cloud API needed.</b>
"""
iface = gr.Interface(
fn=factcheck_app,
inputs=gr.Textbox(lines=2, label="Paste a news article URL"),
outputs=[gr.HTML(label="Fact-Check Results (Summary & Evidence)"), gr.JSON(label="All Results (JSON)")],
title="BioMedical News Fact-Checking & Research Evidence Finder",
description=description,
examples=[["https://www.medicalnewstoday.com/articles/omicron-what-do-we-know-about-the-stealth-variant"]],
allow_flagging="never"
)
iface.launch(share=False, server_name='0.0.0.0', show_error=True)