File size: 19,734 Bytes
6583df1
0f2e032
6583df1
 
0f2e032
 
 
6583df1
0f2e032
 
 
 
 
 
6583df1
0f2e032
 
6583df1
0f2e032
6583df1
0f2e032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6583df1
0f2e032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6583df1
0f2e032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39d517d
0f2e032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6583df1
0f2e032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6583df1
0f2e032
 
 
6583df1
0f2e032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6583df1
0f2e032
 
 
6583df1
 
0f2e032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6583df1
0f2e032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6583df1
0f2e032
 
 
 
 
 
6583df1
0f2e032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ed0cc1
0f2e032
 
a783606
0f2e032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import gradio as gr
import numpy as np
import spaces
import torch
import random
import json
import os
from PIL import Image
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, list_repo_files
from safetensors.torch import load_file
import requests
import re

# Load Kontext model
MAX_SEED = np.iinfo(np.int32).max

pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")

# Load LoRA data
flux_loras_raw = [
    {
        "image": "examples/1.png",
        "title": "Studio Ghibli",
        "repo": "openfree/flux-chatgpt-ghibli-lora",
        "trigger_word": "ghibli",
        "weights": "pytorch_lora_weights.safetensors",
        "likes": 0
    },
    {
        "image": "examples/2.png",
        "title": "Winslow Homer",
        "repo": "openfree/winslow-homer",
        "trigger_word": "homer",
        "weights": "pytorch_lora_weights.safetensors",
        "likes": 0
    },
    {
        "image": "examples/3.png",
        "title": "Van Gogh",
        "repo": "openfree/van-gogh",
        "trigger_word": "gogh",
        "weights": "pytorch_lora_weights.safetensors",
        "likes": 0
    },
    {
        "image": "examples/4.png",
        "title": "Paul Cézanne",
        "repo": "openfree/paul-cezanne",
        "trigger_word": "Cezanne",
        "weights": "pytorch_lora_weights.safetensors",
        "likes": 0
    },
    {
        "image": "examples/5.png",
        "title": "Renoir",
        "repo": "openfree/pierre-auguste-renoir",
        "trigger_word": "Renoir",
        "weights": "pytorch_lora_weights.safetensors",
        "likes": 0
    },
    {
        "image": "examples/6.png",
        "title": "Claude Monet",
        "repo": "openfree/claude-monet",
        "trigger_word": "claude monet",
        "weights": "pytorch_lora_weights.safetensors",
        "likes": 0
    },
    {
        "image": "examples/7.png",
        "title": "Fantasy Art",
        "repo": "openfree/myt-flux-fantasy",
        "trigger_word": "fantasy",
        "weights": "pytorch_lora_weights.safetensors",
        "likes": 0
    }
]
print(f"Loaded {len(flux_loras_raw)} LoRAs")
# Global variables for LoRA management
current_lora = None
lora_cache = {}

def load_lora_weights(repo_id, weights_filename):
    """Load LoRA weights from HuggingFace"""
    try:
        # First try with the specified filename
        try:
            lora_path = hf_hub_download(repo_id=repo_id, filename=weights_filename)
            if repo_id not in lora_cache:
                lora_cache[repo_id] = lora_path
            return lora_path
        except Exception as e:
            print(f"Failed to load {weights_filename}, trying to find alternative LoRA files...")
            
            # If the specified file doesn't exist, try to find any .safetensors file
            from huggingface_hub import list_repo_files
            try:
                files = list_repo_files(repo_id)
                safetensors_files = [f for f in files if f.endswith(('.safetensors', '.bin')) and 'lora' in f.lower()]
                
                if not safetensors_files:
                    # Try without 'lora' in filename
                    safetensors_files = [f for f in files if f.endswith('.safetensors')]
                
                if safetensors_files:
                    # Try the first available file
                    for file in safetensors_files:
                        try:
                            print(f"Trying alternative file: {file}")
                            lora_path = hf_hub_download(repo_id=repo_id, filename=file)
                            if repo_id not in lora_cache:
                                lora_cache[repo_id] = lora_path
                            print(f"Successfully loaded alternative LoRA file: {file}")
                            return lora_path
                        except:
                            continue
                            
                print(f"No suitable LoRA files found in {repo_id}")
                return None
                
            except Exception as list_error:
                print(f"Error listing files in repo {repo_id}: {list_error}")
                return None
                
    except Exception as e:
        print(f"Error loading LoRA from {repo_id}: {e}")
        return None

def update_selection(selected_state: gr.SelectData, flux_loras):
    """Update UI when a LoRA is selected"""
    if selected_state.index >= len(flux_loras):
        return "### No LoRA selected", gr.update(), None
    
    lora = flux_loras[selected_state.index]
    lora_title = lora["title"]
    lora_repo = lora["repo"]
    trigger_word = lora["trigger_word"]
    
    # Create a more informative selected text
    updated_text = f"### 🎨 Selected Style: {lora_title}"
    new_placeholder = f"Describe additional details, e.g., 'wearing a red hat' or 'smiling'"
    
    return updated_text, gr.update(placeholder=new_placeholder), selected_state.index

def get_huggingface_lora(link):
    """Download LoRA from HuggingFace link"""
    split_link = link.split("/")
    if len(split_link) == 2:
        try:
            model_card = ModelCard.load(link)
            trigger_word = model_card.data.get("instance_prompt", "")
            
            # Try to find the correct safetensors file
            files = list_repo_files(link)
            safetensors_files = [f for f in files if f.endswith('.safetensors')]
            
            # Prioritize files with 'lora' in the name
            lora_files = [f for f in safetensors_files if 'lora' in f.lower()]
            if lora_files:
                safetensors_file = lora_files[0]
            elif safetensors_files:
                safetensors_file = safetensors_files[0]
            else:
                # Try .bin files as fallback
                bin_files = [f for f in files if f.endswith('.bin') and 'lora' in f.lower()]
                if bin_files:
                    safetensors_file = bin_files[0]
                else:
                    safetensors_file = "pytorch_lora_weights.safetensors"  # Default fallback
            
            print(f"Found LoRA file: {safetensors_file} in {link}")
            return split_link[1], safetensors_file, trigger_word
            
        except Exception as e:
            print(f"Error in get_huggingface_lora: {e}")
            # Try basic detection
            try:
                files = list_repo_files(link)
                safetensors_file = next((f for f in files if f.endswith('.safetensors')), "pytorch_lora_weights.safetensors")
                return split_link[1], safetensors_file, ""
            except:
                raise Exception(f"Error loading LoRA: {e}")
    else:
        raise Exception("Invalid HuggingFace repository format")

def load_custom_lora(link):
    """Load custom LoRA from user input"""
    if not link:
        return gr.update(visible=False), "", gr.update(visible=False), None, gr.Gallery(selected_index=None), "### 🎨 Select an art style from the gallery", None
    
    try:
        repo_name, weights_file, trigger_word = get_huggingface_lora(link)
        
        card = f'''
        <div class="custom_lora_card">
            <div style="display: flex; align-items: center; margin-bottom: 12px;">
                <span style="font-size: 18px; margin-right: 8px;">✅</span>
                <strong style="font-size: 16px;">Custom LoRA Loaded!</strong>
            </div>
            <div style="background: rgba(255, 255, 255, 0.8); padding: 12px; border-radius: 8px;">
                <h4 style="margin: 0 0 8px 0; color: #333;">{repo_name}</h4>
                <small style="color: #666;">{"Trigger: <code style='background: #f0f0f0; padding: 2px 6px; border-radius: 4px;'><b>"+trigger_word+"</b></code>" if trigger_word else "No trigger word found"}</small>
            </div>
        </div>
        '''
        
        custom_lora_data = {
            "repo": link,
            "weights": weights_file,
            "trigger_word": trigger_word
        }
        
        return gr.update(visible=True), card, gr.update(visible=True), custom_lora_data, gr.Gallery(selected_index=None), f"🎨 Custom Style: {repo_name}", None
    
    except Exception as e:
        return gr.update(visible=True), f"Error: {str(e)}", gr.update(visible=False), None, gr.update(), "### 🎨 Select an art style from the gallery", None

def remove_custom_lora():
    """Remove custom LoRA"""
    return "", gr.update(visible=False), gr.update(visible=False), None, None

def classify_gallery(flux_loras):
    """Sort gallery by likes"""
    try:
        sorted_gallery = sorted(flux_loras, key=lambda x: x.get("likes", 0), reverse=True)
        gallery_items = []
        
        for item in sorted_gallery:
            if "image" in item and "title" in item:
                image_path = item["image"]
                title = item["title"]
                
                # Simply use the path as-is for Gradio to handle
                gallery_items.append((image_path, title))
                print(f"Added to gallery: {image_path} - {title}")
        
        print(f"Total gallery items: {len(gallery_items)}")
        return gallery_items, sorted_gallery
    except Exception as e:
        print(f"Error in classify_gallery: {e}")
        import traceback
        traceback.print_exc()
        return [], []

def infer_with_lora_wrapper(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
    """Wrapper function to handle state serialization"""
    return infer_with_lora(input_image, prompt, selected_index, custom_lora, seed, randomize_seed, guidance_scale, lora_scale, flux_loras, progress)

@spaces.GPU
def infer_with_lora(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
    """Generate image with selected LoRA"""
    global current_lora, pipe
    
    # Check if input image is provided
    if input_image is None:
        gr.Warning("Please upload your portrait photo first! 📸")
        return None, seed, gr.update(visible=False)
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    # Determine which LoRA to use
    lora_to_use = None
    if custom_lora:
        lora_to_use = custom_lora
    elif selected_index is not None and flux_loras and selected_index < len(flux_loras):
        lora_to_use = flux_loras[selected_index]
    # Load LoRA if needed
    if lora_to_use and lora_to_use != current_lora:
        try:
            # Unload current LoRA
            if current_lora:
                pipe.unload_lora_weights()
                print(f"Unloaded previous LoRA")
            
            # Load new LoRA
            repo_id = lora_to_use.get("repo", "unknown")
            weights_file = lora_to_use.get("weights", "pytorch_lora_weights.safetensors")
            print(f"Loading LoRA: {repo_id} with weights: {weights_file}")
            
            lora_path = load_lora_weights(repo_id, weights_file)
            if lora_path:
                pipe.load_lora_weights(lora_path, adapter_name="selected_lora")
                pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale])
                print(f"Successfully loaded: {lora_path} with scale {lora_scale}")
                current_lora = lora_to_use
            else:
                print(f"Failed to load LoRA from {repo_id}")
                gr.Warning(f"Failed to load {lora_to_use.get('title', 'style')}. Please try a different art style.")
                return None, seed, gr.update(visible=False)
            
        except Exception as e:
            print(f"Error loading LoRA: {e}")
            # Continue without LoRA
    else:
        if lora_to_use:
            print(f"Using already loaded LoRA: {lora_to_use.get('repo', 'unknown')}")
    
    try:
        # Convert image to RGB
        input_image = input_image.convert("RGB")
    except Exception as e:
        print(f"Error processing image: {e}")
        gr.Warning("Error processing the uploaded image. Please try a different photo. 📸")
        return None, seed, gr.update(visible=False)
    
    # Check if LoRA is selected
    if lora_to_use is None:
        gr.Warning("Please select an art style from the gallery first! 🎨")
        return None, seed, gr.update(visible=False)
    
    # Add trigger word to prompt
    trigger_word = lora_to_use.get("trigger_word", "")
    
    # Special handling for different art styles
    if trigger_word == "ghibli":
        prompt = f"Create a Studio Ghibli anime style portrait of the person in the photo, {prompt}. Maintain the facial identity while transforming into whimsical anime art style."
    elif trigger_word == "homer":
        prompt = f"Paint the person in Winslow Homer's American realist style, {prompt}. Keep facial features while applying watercolor and marine art techniques."
    elif trigger_word == "gogh":
        prompt = f"Transform the portrait into Van Gogh's post-impressionist style with swirling brushstrokes, {prompt}. Maintain facial identity with expressive colors."
    elif trigger_word == "Cezanne":
        prompt = f"Render the person in Paul Cézanne's geometric post-impressionist style, {prompt}. Keep facial structure while applying structured brushwork."
    elif trigger_word == "Renoir":
        prompt = f"Paint the portrait in Pierre-Auguste Renoir's impressionist style with soft light, {prompt}. Maintain identity with luminous skin tones."
    elif trigger_word == "claude monet":
        prompt = f"Create an impressionist portrait in Claude Monet's style with visible brushstrokes, {prompt}. Keep facial features while using light and color."
    elif trigger_word == "fantasy":
        prompt = f"Transform into an epic fantasy character portrait, {prompt}. Maintain facial identity while adding magical and fantastical elements."
    elif trigger_word == ", How2Draw":
        prompt = f"create a How2Draw sketch of the person of the photo {prompt}, maintain the facial identity of the person and general features"
    elif trigger_word == ", video game screenshot in the style of THSMS":
        prompt = f"create a video game screenshot in the style of THSMS with the person from the photo, {prompt}. maintain the facial identity of the person and general features"
    else:
        prompt = f"convert the style of this portrait photo to {trigger_word} while maintaining the identity of the person. {prompt}. Make sure to maintain the person's facial identity and features, while still changing the overall style to {trigger_word}."
    
    try:
        image = pipe(
            image=input_image, 
            prompt=prompt,
            guidance_scale=guidance_scale,
            generator=torch.Generator().manual_seed(seed),
        ).images[0]
        
        return image, seed, gr.update(visible=True)
    
    except Exception as e:
        print(f"Error during inference: {e}")
        return None, seed, gr.update(visible=False)

# Create Gradio interface
with gr.Blocks(css=css) as demo:
    gr_flux_loras = gr.State(value=flux_loras_raw)
    
    title = gr.HTML(
        """<h1>FLUX Kontex Super LoRAs🖖</h1>""",
    )
    
    selected_state = gr.State(value=None)
    custom_loaded_lora = gr.State(value=None)
    
    with gr.Row(elem_id="main_app"):
        with gr.Column(scale=4, elem_id="box_column"):
            with gr.Group(elem_id="gallery_box"):
                input_image = gr.Image(label="Upload your portrait photo 📸", type="pil", height=300)
                
                gallery = gr.Gallery(
                    label="Choose Your Art Style",
                    allow_preview=False,
                    columns=3,
                    elem_id="gallery",
                    show_share_button=False,
                    height=400
                )
                
                custom_model = gr.Textbox(
                    label="🔗 Or use a custom LoRA from HuggingFace", 
                    placeholder="e.g., username/lora-name",
                    visible=True
                )
                custom_model_card = gr.HTML(visible=False)
                custom_model_button = gr.Button("❌ Remove custom LoRA", visible=False)
        
        with gr.Column(scale=5):
            with gr.Row():
                prompt = gr.Textbox(
                    label="Additional Details (optional)",
                    show_label=False,
                    lines=1,
                    max_lines=1,
                    placeholder="Describe additional details, e.g., 'wearing a red hat' or 'smiling'",
                    elem_id="prompt"
                )
                run_button = gr.Button("Generate ✨", elem_id="run_button")
            
            result = gr.Image(label="Your Artistic Portrait", interactive=False)
            reuse_button = gr.Button("🔄 Reuse this image", visible=False)
            
            with gr.Accordion("⚙️ Advanced Settings", open=False):
                lora_scale = gr.Slider(
                    label="Style Strength",
                    minimum=0,
                    maximum=2,
                    step=0.1,
                    value=1.0,
                    info="How strongly to apply the art style (1.0 = balanced)"
                )
                seed = gr.Slider(
                    label="Random Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                    info="Set to 0 for random results"
                )
                randomize_seed = gr.Checkbox(label="🎲 Randomize seed for each generation", value=True)
                guidance_scale = gr.Slider(
                    label="Image Guidance",
                    minimum=1,
                    maximum=10,
                    step=0.1,
                    value=2.5,
                    info="How closely to follow the input image (lower = more creative)"
                )
            
            prompt_title = gr.Markdown(
                value="### 🎨 Select an art style from the gallery",
                visible=True,
                elem_id="selected_lora",
            )

    # Event handlers
    custom_model.input(
        fn=load_custom_lora,
        inputs=[custom_model],
        outputs=[custom_model_card, custom_model_card, custom_model_button, custom_loaded_lora, gallery, prompt_title, selected_state],
    )
    
    custom_model_button.click(
        fn=remove_custom_lora,
        outputs=[custom_model, custom_model_button, custom_model_card, custom_loaded_lora, selected_state]
    )
    
    gallery.select(
        fn=update_selection,
        inputs=[gr_flux_loras],
        outputs=[prompt_title, prompt, selected_state],
        show_progress=False
    )
    
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer_with_lora_wrapper,
        inputs=[input_image, prompt, selected_state, custom_loaded_lora, seed, randomize_seed, guidance_scale, lora_scale, gr_flux_loras],
        outputs=[result, seed, reuse_button]
    )
    
    reuse_button.click(
        fn=lambda image: image,
        inputs=[result],
        outputs=[input_image]
    )
    
    # Initialize gallery
    demo.load(
        fn=classify_gallery, 
        inputs=[gr_flux_loras], 
        outputs=[gallery, gr_flux_loras]
    )

demo.queue(default_concurrency_limit=None)
demo.launch()