prithivMLmods's picture
Update app.py
70733b2 verified
raw
history blame
14.1 kB
import gradio as gr
import numpy as np
import spaces
import torch
import random
import json
import os
from PIL import Image
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image, peft_utils
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard
from safetensors.torch import load_file
import requests
import re
# Load the base model
MAX_SEED = np.iinfo(np.int32).max
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
try: # Temporary workaround for diffusers LoRA loading issue
from diffusers.utils.peft_utils import _derive_exclude_modules
def new_derive_exclude_modules(*args, **kwargs):
exclude_modules = _derive_exclude_modules(*args, **kwargs)
if exclude_modules is not None:
exclude_modules = [n for n in exclude_modules if "proj_out" not in n]
return exclude_modules
peft_utils._derive_exclude_modules = new_derive_exclude_modules
except:
pass
# Load LoRA configurations from JSON
with open("lora_configs.json", "r") as file:
data = json.load(file)
lora_configs = [
{
"image": item["image"],
"title": item["title"],
"repo": item["repo"],
"trigger_word": item.get("trigger_word", ""),
"trigger_position": item.get("trigger_position", "prepend"),
"weights": item.get("weights", "pytorch_lora_weights.safetensors"),
}
for item in data
]
print(f"Loaded {len(lora_configs)} LoRAs from JSON")
# Global variables for adapter management
active_lora_adapter = None
lora_cache = {}
def load_lora_weights(repo_id, weights_filename):
"""Load adapter weights from HuggingFace"""
try:
if repo_id not in lora_cache:
lora_path = hf_hub_download(repo_id=repo_id, filename=weights_filename)
lora_cache[repo_id] = lora_path
return lora_cache[repo_id]
except Exception as e:
print(f"Error loading adapter from {repo_id}: {e}")
return None
def on_lora_select(selected_state: gr.SelectData, lora_configs):
"""Update UI when an adapter is selected"""
if selected_state.index >= len(lora_configs):
return "### No adapter selected", gr.update(), None
lora_repo = lora_configs[selected_state.index]["repo"]
trigger_word = lora_configs[selected_state.index]["trigger_word"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})"
new_placeholder = f"optional description, e.g. 'a man with glasses and a beard'"
return updated_text, gr.update(placeholder=new_placeholder), selected_state.index
def fetch_lora_from_hf(link):
"""Retrieve adapter from HuggingFace link"""
split_link = link.split("/")
if len(split_link) == 2:
try:
model_card = ModelCard.load(link)
trigger_word = model_card.data.get("instance_prompt", "")
fs = HfFileSystem()
list_of_files = fs.ls(link, detail=False)
safetensors_file = None
for file in list_of_files:
if file.endswith(".safetensors") and "lora" in file.lower():
safetensors_file = file.split("/")[-1]
break
if not safetensors_file:
safetensors_file = "pytorch_lora_weights.safetensors"
return split_link[1], safetensors_file, trigger_word
except Exception as e:
raise Exception(f"Error loading adapter: {e}")
else:
raise Exception("Invalid HuggingFace repository format")
def load_user_lora(link):
"""Load a user-provided adapter"""
if not link:
return gr.update(visible=False), "", gr.update(visible=False), None, gr.Gallery(selected_index=None), "### Click on an adapter in the gallery to select it", None
try:
repo_name, weights_file, trigger_word = fetch_lora_from_hf(link)
card = f'''
<div style="border: 1px solid #ddd; padding: 10px; border-radius: 8px; margin: 10px 0;">
<span><strong>Loaded custom adapter:</strong></span>
<div style="margin-top: 8px;">
<h4>{repo_name}</h4>
<small>{"Using: <code><b>"+trigger_word+"</b></code> as trigger word" if trigger_word else "No trigger word found"}</small>
</div>
</div>
'''
user_lora_data = {
"repo": link,
"weights": weights_file,
"trigger_word": trigger_word
}
return gr.update(visible=True), card, gr.update(visible=True), user_lora_data, gr.Gallery(selected_index=None), f"Custom: {repo_name}", None
except Exception as e:
return gr.update(visible=True), f"Error: {str(e)}", gr.update(visible=False), None, gr.update(), "### Click on an adapter in the gallery to select it", None
def unload_user_lora():
"""Remove the user-provided adapter"""
return "", gr.update(visible=False), gr.update(visible=False), None, None
def sort_lora_gallery(lora_configs):
"""Sort the adapter gallery by likes"""
sorted_gallery = sorted(lora_configs, key=lambda x: x.get("likes", 0), reverse=True)
return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery
def generate_image_wrapper(input_image, prompt, selected_index, user_lora, seed=42, randomize_seed=False, steps=28, guidance_scale=2.5, lora_scale=1.75, width=960, height=1280, lora_configs=None, progress=gr.Progress(track_tqdm=True)):
"""Wrapper for image generation to handle state"""
return generate_image(input_image, prompt, selected_index, user_lora, seed, randomize_seed, steps, guidance_scale, lora_scale, width, height, lora_configs, progress)
@spaces.GPU
def generate_image(input_image, prompt, selected_index, user_lora, seed=42, randomize_seed=False, steps=28, guidance_scale=2.5, lora_scale=1.0, width=960, height=1280, lora_configs=None, progress=gr.Progress(track_tqdm=True)):
"""Generate an image using the selected adapter"""
global active_lora_adapter, pipe
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Select the adapter to use
lora_to_use = None
if user_lora:
lora_to_use = user_lora
elif selected_index is not None and lora_configs and selected_index < len(lora_configs):
lora_to_use = lora_configs[selected_index]
print(f"Loaded {len(lora_configs)} adapters from JSON")
# Load the adapter if necessary
if lora_to_use and lora_to_use != active_lora_adapter:
try:
if active_lora_adapter:
pipe.unload_lora_weights()
lora_path = load_lora_weights(lora_to_use["repo"], lora_to_use["weights"])
if lora_path:
pipe.load_lora_weights(lora_path, adapter_name="selected_lora")
pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale])
print(f"loaded: {lora_path} with scale {lora_scale}")
active_lora_adapter = lora_to_use
except Exception as e:
print(f"Error loading adapter: {e}")
else:
print(f"using already loaded adapter: {lora_to_use}")
input_image = input_image.convert("RGB")
# Modify prompt based on trigger word
trigger_word = lora_to_use["trigger_word"]
if trigger_word == ", How2Draw":
prompt = f"create a How2Draw sketch of the person of the photo {prompt}, maintain the facial identity of the person and general features"
elif trigger_word == "__ ":
prompt = f" {prompt}. Accurately render the toolimpact logo and any tool impact iconography. The toolimpact logo begins with a two-line-tall drop-cap capital letter T with a dot in the center of its top bar."
else:
prompt = f" {prompt}. convert the style of this photo or image to {trigger_word}. Maintain the facial identity of any persons and the general features of the image!"
try:
image = pipe(
image=input_image,
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=steps,
generator=torch.Generator().manual_seed(seed),
width=width,
height=height,
max_area=width * height
).images[0]
return image, seed, gr.update(visible=True)
except Exception as e:
print(f"Error during generation: {e}")
return None, seed, gr.update(visible=False)
# CSS styling
css = """
#app_container {
display: flex;
gap: 20px;
}
#left_panel {
min-width: 400px;
}
#lora_info {
color: #2563eb;
font-weight: bold;
}
#edit_prompt {
flex-grow: 1;
}
#generate_button {
background: linear-gradient(45deg, #2563eb, #3b82f6);
color: white;
border: none;
padding: 8px 16px;
border-radius: 6px;
font-weight: bold;
}
.user_lora_card {
background: #f8fafc;
border: 1px solid #e2e8f0;
border-radius: 8px;
padding: 12px;
margin: 8px 0;
}
#lora_gallery{
overflow: scroll !important
}
"""
# Build the Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 60)) as demo:
gr_lora_configs = gr.State(value=lora_configs)
title = gr.HTML(
"""<h1>Flux Kontext DLC😍</h1>""",
)
selected_state = gr.State(value=None)
user_lora = gr.State(value=None)
with gr.Row(elem_id="app_container"):
with gr.Column(scale=4, elem_id="left_panel"):
with gr.Group(elem_id="lora_selection"):
input_image = gr.Image(label="Upload a picture", type="pil", height=300)
gallery = gr.Gallery(
label="Pick an Adapter",
allow_preview=False,
columns=3,
elem_id="lora_gallery",
show_share_button=False,
height=400
)
user_lora_input = gr.Textbox(
label="Or enter a custom HuggingFace adapter",
placeholder="e.g., username/adapter-name",
visible=True
)
user_lora_card = gr.HTML(visible=False)
unload_user_lora_button = gr.Button("Remove custom adapter", visible=True)
with gr.Column(scale=5):
with gr.Row():
prompt = gr.Textbox(
label="Editing Prompt",
show_label=False,
lines=1,
max_lines=1,
placeholder="optional description, e.g. 'colorize and stylize, leave all else as is'",
elem_id="edit_prompt"
)
run_button = gr.Button("Generate", elem_id="generate_button")
result = gr.Image(label="Generated Image", interactive=False)
reuse_button = gr.Button("Reuse this image", visible=False)
with gr.Accordion("Advanced Settings", open=True):
lora_scale = gr.Slider(
label="Adapter Scale",
minimum=0,
maximum=2,
step=0.1,
value=1.5,
info="Controls the strength of the adapter effect"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
steps = gr.Slider(
label="Steps",
minimum=1,
maximum=40,
value=10,
step=1
)
width = gr.Slider(
label="Width",
minimum=128,
maximum=2560,
step=1,
value=960,
)
height = gr.Slider(
label="Height",
minimum=128,
maximum=2560,
step=1,
value=1280,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=10,
step=0.1,
value=2.8,
)
prompt_title = gr.Markdown(
value="### Click on an adapter in the gallery to select it",
visible=True,
elem_id="lora_info",
)
# Event handlers
user_lora_input.input(
fn=load_user_lora,
inputs=[user_lora_input],
outputs=[user_lora_card, user_lora_card, unload_user_lora_button, user_lora, gallery, prompt_title, selected_state],
)
unload_user_lora_button.click(
fn=unload_user_lora,
outputs=[user_lora_input, unload_user_lora_button, user_lora_card, user_lora, selected_state]
)
gallery.select(
fn=on_lora_select,
inputs=[gr_lora_configs],
outputs=[prompt_title, prompt, selected_state],
show_progress=False
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=generate_image_wrapper,
inputs=[input_image, prompt, selected_state, user_lora, seed, randomize_seed, steps, guidance_scale, lora_scale, width, height, gr_lora_configs],
outputs=[result, seed, reuse_button]
)
reuse_button.click(
fn=lambda image: image,
inputs=[result],
outputs=[input_image]
)
# Initialize the gallery
demo.load(
fn=sort_lora_gallery,
inputs=[gr_lora_configs],
outputs=[gallery, gr_lora_configs]
)
demo.queue(default_concurrency_limit=None)
demo.launch()