Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,372 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import torch
|
| 3 |
-
from diffusers import FluxFillPipeline
|
| 4 |
-
from diffusers.utils import load_image
|
| 5 |
-
from PIL import Image, ImageDraw
|
| 6 |
import numpy as np
|
| 7 |
-
import
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
target_size = (width, height)
|
| 24 |
-
|
| 25 |
-
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
|
| 26 |
-
new_width = int(image.width * scale_factor)
|
| 27 |
-
new_height = int(image.height * scale_factor)
|
| 28 |
-
|
| 29 |
-
source = image.resize((new_width, new_height), Image.LANCZOS)
|
| 30 |
-
|
| 31 |
-
if resize_option == "Full":
|
| 32 |
-
resize_percentage = 100
|
| 33 |
-
elif resize_option == "75%":
|
| 34 |
-
resize_percentage = 75
|
| 35 |
-
elif resize_option == "50%":
|
| 36 |
-
resize_percentage = 50
|
| 37 |
-
elif resize_option == "33%":
|
| 38 |
-
resize_percentage = 33
|
| 39 |
-
elif resize_option == "25%":
|
| 40 |
-
resize_percentage = 25
|
| 41 |
-
else: # Custom
|
| 42 |
-
resize_percentage = custom_resize_percentage
|
| 43 |
-
|
| 44 |
-
# Calculate new dimensions based on percentage
|
| 45 |
-
resize_factor = resize_percentage / 100
|
| 46 |
-
new_width = int(source.width * resize_factor)
|
| 47 |
-
new_height = int(source.height * resize_factor)
|
| 48 |
-
|
| 49 |
-
# Ensure minimum size of 64 pixels
|
| 50 |
-
new_width = max(new_width, 64)
|
| 51 |
-
new_height = max(new_height, 64)
|
| 52 |
-
|
| 53 |
-
# Resize the image
|
| 54 |
-
source = source.resize((new_width, new_height), Image.LANCZOS)
|
| 55 |
-
|
| 56 |
-
# Calculate the overlap in pixels based on the percentage
|
| 57 |
-
overlap_x = int(new_width * (overlap_percentage / 100))
|
| 58 |
-
overlap_y = int(new_height * (overlap_percentage / 100))
|
| 59 |
-
|
| 60 |
-
# Ensure minimum overlap of 1 pixel
|
| 61 |
-
overlap_x = max(overlap_x, 1)
|
| 62 |
-
overlap_y = max(overlap_y, 1)
|
| 63 |
-
|
| 64 |
-
# Calculate margins based on alignment
|
| 65 |
-
if alignment == "Middle":
|
| 66 |
-
margin_x = (target_size[0] - new_width) // 2
|
| 67 |
-
margin_y = (target_size[1] - new_height) // 2
|
| 68 |
-
elif alignment == "Left":
|
| 69 |
-
margin_x = 0
|
| 70 |
-
margin_y = (target_size[1] - new_height) // 2
|
| 71 |
-
elif alignment == "Right":
|
| 72 |
-
margin_x = target_size[0] - new_width
|
| 73 |
-
margin_y = (target_size[1] - new_height) // 2
|
| 74 |
-
elif alignment == "Top":
|
| 75 |
-
margin_x = (target_size[0] - new_width) // 2
|
| 76 |
-
margin_y = 0
|
| 77 |
-
elif alignment == "Bottom":
|
| 78 |
-
margin_x = (target_size[0] - new_width) // 2
|
| 79 |
-
margin_y = target_size[1] - new_height
|
| 80 |
-
|
| 81 |
-
# Adjust margins to eliminate gaps
|
| 82 |
-
margin_x = max(0, min(margin_x, target_size[0] - new_width))
|
| 83 |
-
margin_y = max(0, min(margin_y, target_size[1] - new_height))
|
| 84 |
-
|
| 85 |
-
# Create a new background image and paste the resized source image
|
| 86 |
-
background = Image.new('RGB', target_size, (255, 255, 255))
|
| 87 |
-
background.paste(source, (margin_x, margin_y))
|
| 88 |
-
|
| 89 |
-
# Create the mask
|
| 90 |
-
mask = Image.new('L', target_size, 255)
|
| 91 |
-
mask_draw = ImageDraw.Draw(mask)
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
(
|
| 113 |
-
(
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
|
|
|
|
|
|
|
|
|
| 118 |
@spaces.GPU
|
| 119 |
-
def
|
| 120 |
-
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
result = result.convert("RGBA")
|
| 144 |
-
cnet_image.paste(result, (0, 0), mask)
|
| 145 |
-
|
| 146 |
-
return cnet_image, background
|
| 147 |
-
|
| 148 |
-
def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
| 149 |
-
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
preview = Image.alpha_composite(preview, red_mask)
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
def preload_presets(target_ratio, ui_width, ui_height):
|
| 163 |
-
if target_ratio == "9:16":
|
| 164 |
-
return 720, 1280, gr.update()
|
| 165 |
-
elif target_ratio == "16:9":
|
| 166 |
-
return 1280, 720, gr.update()
|
| 167 |
-
elif target_ratio == "1:1":
|
| 168 |
-
return 1024, 1024, gr.update()
|
| 169 |
-
elif target_ratio == "Custom":
|
| 170 |
-
return ui_width, ui_height, gr.update(open=True)
|
| 171 |
-
|
| 172 |
-
def select_the_right_preset(user_width, user_height):
|
| 173 |
-
if user_width == 720 and user_height == 1280:
|
| 174 |
-
return "9:16"
|
| 175 |
-
elif user_width == 1280 and user_height == 720:
|
| 176 |
-
return "16:9"
|
| 177 |
-
elif user_width == 1024 and user_height == 1024:
|
| 178 |
-
return "1:1"
|
| 179 |
else:
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
def update_history(new_image, history):
|
| 186 |
-
if history is None:
|
| 187 |
-
history = []
|
| 188 |
-
history.insert(0, new_image)
|
| 189 |
-
return history
|
| 190 |
-
|
| 191 |
-
css = """
|
| 192 |
-
.gradio-container {
|
| 193 |
-
max-width: 1250px !important;
|
| 194 |
-
}
|
| 195 |
-
"""
|
| 196 |
-
|
| 197 |
-
title = """<h1 align="center">Flux Outpaint Dev 🤩</h1>"""
|
| 198 |
-
|
| 199 |
-
with gr.Blocks(css=css) as demo:
|
| 200 |
-
with gr.Column():
|
| 201 |
-
gr.HTML(title)
|
| 202 |
-
|
| 203 |
-
with gr.Row():
|
| 204 |
-
with gr.Column():
|
| 205 |
-
input_image = gr.Image(
|
| 206 |
-
type="pil",
|
| 207 |
-
label="Input Image"
|
| 208 |
-
)
|
| 209 |
-
|
| 210 |
-
with gr.Row():
|
| 211 |
-
with gr.Column(scale=2):
|
| 212 |
-
prompt_input = gr.Textbox(label="Prompt (Optional)")
|
| 213 |
-
with gr.Column(scale=1):
|
| 214 |
-
run_button = gr.Button("Generate")
|
| 215 |
-
|
| 216 |
-
with gr.Row():
|
| 217 |
-
target_ratio = gr.Radio(
|
| 218 |
-
label="Image Ratio",
|
| 219 |
-
choices=["9:16", "16:9", "1:1", "Custom"],
|
| 220 |
-
value="9:16",
|
| 221 |
-
scale=3
|
| 222 |
-
)
|
| 223 |
-
alignment_dropdown = gr.Dropdown(
|
| 224 |
-
choices=["Middle", "Left", "Right", "Top", "Bottom"],
|
| 225 |
-
value="Middle",
|
| 226 |
-
label="Alignment",
|
| 227 |
-
)
|
| 228 |
-
resize_option = gr.Radio(
|
| 229 |
-
label="Resize input image",
|
| 230 |
-
choices=["Full", "75%", "50%", "33%", "25%", "Custom"],
|
| 231 |
-
value="75%"
|
| 232 |
-
)
|
| 233 |
-
custom_resize_percentage = gr.Slider(
|
| 234 |
-
label="Custom resize (%)",
|
| 235 |
-
minimum=1,
|
| 236 |
-
maximum=100,
|
| 237 |
-
step=1,
|
| 238 |
-
value=50,
|
| 239 |
-
visible=False
|
| 240 |
-
)
|
| 241 |
-
with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
|
| 242 |
-
with gr.Column():
|
| 243 |
-
with gr.Row():
|
| 244 |
-
width_slider = gr.Slider(
|
| 245 |
-
label="Target Width",
|
| 246 |
-
minimum=720,
|
| 247 |
-
maximum=1536,
|
| 248 |
-
step=8,
|
| 249 |
-
value=720,
|
| 250 |
-
)
|
| 251 |
-
height_slider = gr.Slider(
|
| 252 |
-
label="Target Height",
|
| 253 |
-
minimum=720,
|
| 254 |
-
maximum=1536,
|
| 255 |
-
step=8,
|
| 256 |
-
value=1280,
|
| 257 |
-
)
|
| 258 |
-
|
| 259 |
-
num_inference_steps = gr.Slider(label="Steps", minimum=2, maximum=50, step=1, value=28)
|
| 260 |
-
with gr.Group():
|
| 261 |
-
overlap_percentage = gr.Slider(
|
| 262 |
-
label="Mask overlap (%)",
|
| 263 |
-
minimum=1,
|
| 264 |
-
maximum=50,
|
| 265 |
-
value=10,
|
| 266 |
-
step=1
|
| 267 |
-
)
|
| 268 |
-
with gr.Row():
|
| 269 |
-
overlap_top = gr.Checkbox(label="Overlap Top", value=True)
|
| 270 |
-
overlap_right = gr.Checkbox(label="Overlap Right", value=True)
|
| 271 |
-
with gr.Row():
|
| 272 |
-
overlap_left = gr.Checkbox(label="Overlap Left", value=True)
|
| 273 |
-
overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True)
|
| 274 |
-
|
| 275 |
-
with gr.Column():
|
| 276 |
-
preview_button = gr.Button("Preview alignment and mask")
|
| 277 |
-
|
| 278 |
-
with gr.Column():
|
| 279 |
-
result = gr.Image(
|
| 280 |
-
interactive=False,
|
| 281 |
-
label="Generated Image",
|
| 282 |
-
)
|
| 283 |
-
use_as_input_button = gr.Button("Use as Input Image", visible=False)
|
| 284 |
-
with gr.Accordion("History and Mask", open=False):
|
| 285 |
-
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
|
| 286 |
-
preview_image = gr.Image(label="Mask preview")
|
| 287 |
-
|
| 288 |
-
def use_output_as_input(output_image):
|
| 289 |
-
return output_image
|
| 290 |
-
|
| 291 |
-
use_as_input_button.click(
|
| 292 |
-
fn=use_output_as_input,
|
| 293 |
-
inputs=[result],
|
| 294 |
-
outputs=[input_image]
|
| 295 |
-
)
|
| 296 |
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
import uuid
|
| 4 |
+
import json
|
| 5 |
+
import time
|
| 6 |
+
import asyncio
|
| 7 |
+
import re
|
| 8 |
+
from threading import Thread
|
| 9 |
+
|
| 10 |
import gradio as gr
|
| 11 |
+
import spaces
|
| 12 |
import torch
|
|
|
|
|
|
|
|
|
|
| 13 |
import numpy as np
|
| 14 |
+
from PIL import Image
|
| 15 |
+
import edge_tts
|
| 16 |
+
|
| 17 |
+
from transformers import (
|
| 18 |
+
AutoModelForCausalLM,
|
| 19 |
+
AutoTokenizer,
|
| 20 |
+
TextIteratorStreamer,
|
| 21 |
+
Qwen2VLForConditionalGeneration,
|
| 22 |
+
AutoProcessor,
|
| 23 |
+
)
|
| 24 |
+
from transformers.image_utils import load_image
|
| 25 |
+
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
| 26 |
+
|
| 27 |
+
DESCRIPTION = """
|
| 28 |
+
# SDXL LoRA DLC 🎃
|
| 29 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
css = '''
|
| 32 |
+
h1 {
|
| 33 |
+
text-align: center;
|
| 34 |
+
display: block;
|
| 35 |
+
}
|
| 36 |
|
| 37 |
+
#duplicate-button {
|
| 38 |
+
margin: auto;
|
| 39 |
+
color: #fff;
|
| 40 |
+
background: #1565c0;
|
| 41 |
+
border-radius: 100vh;
|
| 42 |
+
}
|
| 43 |
+
'''
|
| 44 |
+
|
| 45 |
+
MAX_MAX_NEW_TOKENS = 2048
|
| 46 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 47 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 48 |
+
|
| 49 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 50 |
+
|
| 51 |
+
# -----------------------
|
| 52 |
+
# Progress Bar Helper
|
| 53 |
+
# -----------------------
|
| 54 |
+
def progress_bar_html(label: str) -> str:
|
| 55 |
+
"""
|
| 56 |
+
Returns an HTML snippet for a thin progress bar with a label.
|
| 57 |
+
The progress bar is styled as a dark red animated bar.
|
| 58 |
+
"""
|
| 59 |
+
return f'''
|
| 60 |
+
<div style="display: flex; align-items: center;">
|
| 61 |
+
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
| 62 |
+
<div style="width: 110px; height: 5px; background-color: #DDA0DD; border-radius: 2px; overflow: hidden;">
|
| 63 |
+
<div style="width: 100%; height: 100%; background-color: #FF00FF; animation: loading 1.5s linear infinite;"></div>
|
| 64 |
+
</div>
|
| 65 |
+
</div>
|
| 66 |
+
<style>
|
| 67 |
+
@keyframes loading {{
|
| 68 |
+
0% {{ transform: translateX(-100%); }}
|
| 69 |
+
100% {{ transform: translateX(100%); }}
|
| 70 |
+
}}
|
| 71 |
+
</style>
|
| 72 |
+
'''
|
| 73 |
+
|
| 74 |
+
# -----------------------
|
| 75 |
+
# Text Generation Setup
|
| 76 |
+
# -----------------------
|
| 77 |
+
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
| 78 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 79 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 80 |
+
model_id,
|
| 81 |
+
device_map="auto",
|
| 82 |
+
torch_dtype=torch.bfloat16,
|
| 83 |
+
)
|
| 84 |
+
model.eval()
|
| 85 |
+
|
| 86 |
+
TTS_VOICES = [
|
| 87 |
+
"en-US-JennyNeural", # @tts1
|
| 88 |
+
"en-US-GuyNeural", # @tts2
|
| 89 |
+
]
|
| 90 |
+
|
| 91 |
+
# -----------------------
|
| 92 |
+
# Multimodal OCR Setup
|
| 93 |
+
# -----------------------
|
| 94 |
+
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR2-2B-Instruct"
|
| 95 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 96 |
+
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 97 |
+
MODEL_ID,
|
| 98 |
+
trust_remote_code=True,
|
| 99 |
+
torch_dtype=torch.float16
|
| 100 |
+
).to("cuda").eval()
|
| 101 |
+
|
| 102 |
+
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
| 103 |
+
"""Convert text to speech using Edge TTS and save as MP3"""
|
| 104 |
+
communicate = edge_tts.Communicate(text, voice)
|
| 105 |
+
await communicate.save(output_file)
|
| 106 |
+
return output_file
|
| 107 |
+
|
| 108 |
+
def clean_chat_history(chat_history):
|
| 109 |
+
"""
|
| 110 |
+
Filter out any chat entries whose "content" is not a string.
|
| 111 |
+
"""
|
| 112 |
+
cleaned = []
|
| 113 |
+
for msg in chat_history:
|
| 114 |
+
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
|
| 115 |
+
cleaned.append(msg)
|
| 116 |
+
return cleaned
|
| 117 |
+
|
| 118 |
+
# -----------------------
|
| 119 |
+
# Stable Diffusion Image Generation Setup
|
| 120 |
+
# -----------------------
|
| 121 |
+
|
| 122 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 123 |
+
USE_TORCH_COMPILE = False
|
| 124 |
+
ENABLE_CPU_OFFLOAD = False
|
| 125 |
+
|
| 126 |
+
if torch.cuda.is_available():
|
| 127 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 128 |
+
"SG161222/RealVisXL_V4.0_Lightning",
|
| 129 |
+
torch_dtype=torch.float16,
|
| 130 |
+
use_safetensors=True,
|
| 131 |
+
)
|
| 132 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 133 |
|
| 134 |
+
# LoRA options with one example for each.
|
| 135 |
+
LORA_OPTIONS = {
|
| 136 |
+
"Realism": ("prithivMLmods/Canopus-Realism-LoRA", "Canopus-Realism-LoRA.safetensors", "rlms"),
|
| 137 |
+
"Pixar": ("prithivMLmods/Canopus-Pixar-Art", "Canopus-Pixar-Art.safetensors", "pixar"),
|
| 138 |
+
"Photoshoot": ("prithivMLmods/Canopus-Photo-Shoot-Mini-LoRA", "Canopus-Photo-Shoot-Mini-LoRA.safetensors", "photo"),
|
| 139 |
+
"Clothing": ("prithivMLmods/Canopus-Clothing-Adp-LoRA", "Canopus-Dress-Clothing-LoRA.safetensors", "clth"),
|
| 140 |
+
"Interior": ("prithivMLmods/Canopus-Interior-Architecture-0.1", "Canopus-Interior-Architecture-0.1δ.safetensors", "arch"),
|
| 141 |
+
"Fashion": ("prithivMLmods/Canopus-Fashion-Product-Dilation", "Canopus-Fashion-Product-Dilation.safetensors", "fashion"),
|
| 142 |
+
"Minimalistic": ("prithivMLmods/Pegasi-Minimalist-Image-Style", "Pegasi-Minimalist-Image-Style.safetensors", "minimalist"),
|
| 143 |
+
"Modern": ("prithivMLmods/Canopus-Modern-Clothing-Design", "Canopus-Modern-Clothing-Design.safetensors", "mdrnclth"),
|
| 144 |
+
"Animaliea": ("prithivMLmods/Canopus-Animaliea-Artism", "Canopus-Animaliea-Artism.safetensors", "Animaliea"),
|
| 145 |
+
"Wallpaper": ("prithivMLmods/Canopus-Liquid-Wallpaper-Art", "Canopus-Liquid-Wallpaper-Minimalize-LoRA.safetensors", "liquid"),
|
| 146 |
+
"Cars": ("prithivMLmods/Canes-Cars-Model-LoRA", "Canes-Cars-Model-LoRA.safetensors", "car"),
|
| 147 |
+
"PencilArt": ("prithivMLmods/Canopus-Pencil-Art-LoRA", "Canopus-Pencil-Art-LoRA.safetensors", "Pencil Art"),
|
| 148 |
+
"ArtMinimalistic": ("prithivMLmods/Canopus-Art-Medium-LoRA", "Canopus-Art-Medium-LoRA.safetensors", "mdm"),
|
| 149 |
+
}
|
| 150 |
+
|
| 151 |
+
# Load all LoRA weights
|
| 152 |
+
for model_name, weight_name, adapter_name in LORA_OPTIONS.values():
|
| 153 |
+
pipe.load_lora_weights(model_name, weight_name=weight_name, adapter_name=adapter_name)
|
| 154 |
+
pipe.to("cuda")
|
| 155 |
+
else:
|
| 156 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 157 |
+
"SG161222/RealVisXL_V4.0_Lightning",
|
| 158 |
+
torch_dtype=torch.float32,
|
| 159 |
+
use_safetensors=True,
|
| 160 |
+
).to(device)
|
| 161 |
+
|
| 162 |
+
def save_image(img: Image.Image) -> str:
|
| 163 |
+
"""Save a PIL image with a unique filename and return the path."""
|
| 164 |
+
unique_name = str(uuid.uuid4()) + ".png"
|
| 165 |
+
img.save(unique_name)
|
| 166 |
+
return unique_name
|
| 167 |
+
|
| 168 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 169 |
+
if randomize_seed:
|
| 170 |
+
seed = random.randint(0, MAX_SEED)
|
| 171 |
+
return seed
|
| 172 |
+
|
| 173 |
+
@spaces.GPU(duration=180, enable_queue=True)
|
| 174 |
+
def generate_image(
|
| 175 |
+
prompt: str,
|
| 176 |
+
negative_prompt: str = "",
|
| 177 |
+
seed: int = 0,
|
| 178 |
+
width: int = 1024,
|
| 179 |
+
height: int = 1024,
|
| 180 |
+
guidance_scale: float = 3.0,
|
| 181 |
+
randomize_seed: bool = True,
|
| 182 |
+
lora_model: str = "Realism",
|
| 183 |
+
progress=gr.Progress(track_tqdm=True),
|
| 184 |
+
):
|
| 185 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 186 |
+
effective_negative_prompt = negative_prompt # Use provided negative prompt if any
|
| 187 |
+
model_name, weight_name, adapter_name = LORA_OPTIONS[lora_model]
|
| 188 |
+
pipe.set_adapters(adapter_name)
|
| 189 |
+
outputs = pipe(
|
| 190 |
+
prompt=prompt,
|
| 191 |
+
negative_prompt=effective_negative_prompt,
|
| 192 |
+
width=width,
|
| 193 |
+
height=height,
|
| 194 |
+
guidance_scale=guidance_scale,
|
| 195 |
+
num_inference_steps=28,
|
| 196 |
+
num_images_per_prompt=1,
|
| 197 |
+
cross_attention_kwargs={"scale": 0.65},
|
| 198 |
+
output_type="pil",
|
| 199 |
+
)
|
| 200 |
+
images = outputs.images
|
| 201 |
+
image_paths = [save_image(img) for img in images]
|
| 202 |
+
return image_paths, seed
|
| 203 |
|
| 204 |
+
# -----------------------
|
| 205 |
+
# Main Chat/Generation Function
|
| 206 |
+
# -----------------------
|
| 207 |
@spaces.GPU
|
| 208 |
+
def generate(
|
| 209 |
+
input_dict: dict,
|
| 210 |
+
chat_history: list[dict],
|
| 211 |
+
max_new_tokens: int = 1024,
|
| 212 |
+
temperature: float = 0.6,
|
| 213 |
+
top_p: float = 0.9,
|
| 214 |
+
top_k: int = 50,
|
| 215 |
+
repetition_penalty: float = 1.2,
|
| 216 |
+
):
|
| 217 |
+
"""
|
| 218 |
+
Generates chatbot responses with support for multimodal input, TTS, and image generation.
|
| 219 |
+
Special commands:
|
| 220 |
+
- "@tts1" or "@tts2": triggers text-to-speech.
|
| 221 |
+
- "@<lora_command>": triggers image generation using the new LoRA pipeline.
|
| 222 |
+
Available commands (case-insensitive): @realism, @pixar, @photoshoot, @clothing, @interior, @fashion,
|
| 223 |
+
@minimalistic, @modern, @animaliea, @wallpaper, @cars, @pencilart, @artminimalistic.
|
| 224 |
+
"""
|
| 225 |
+
text = input_dict["text"]
|
| 226 |
+
files = input_dict.get("files", [])
|
| 227 |
|
| 228 |
+
# Check for image generation command based on LoRA tags.
|
| 229 |
+
lora_mapping = { key.lower(): key for key in LORA_OPTIONS }
|
| 230 |
+
for key_lower, key in lora_mapping.items():
|
| 231 |
+
command_tag = "@" + key_lower
|
| 232 |
+
if text.strip().lower().startswith(command_tag):
|
| 233 |
+
prompt_text = text.strip()[len(command_tag):].strip()
|
| 234 |
+
yield progress_bar_html(f"Processing Image Generation ({key} style)")
|
| 235 |
+
image_paths, used_seed = generate_image(
|
| 236 |
+
prompt=prompt_text,
|
| 237 |
+
negative_prompt="",
|
| 238 |
+
seed=1,
|
| 239 |
+
width=1024,
|
| 240 |
+
height=1024,
|
| 241 |
+
guidance_scale=3,
|
| 242 |
+
randomize_seed=True,
|
| 243 |
+
lora_model=key,
|
| 244 |
+
)
|
| 245 |
+
yield progress_bar_html("Finalizing Image Generation")
|
| 246 |
+
yield gr.Image(image_paths[0])
|
| 247 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
|
| 249 |
+
# Check for TTS command (@tts1 or @tts2)
|
| 250 |
+
tts_prefix = "@tts"
|
| 251 |
+
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
| 252 |
+
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
|
|
|
| 253 |
|
| 254 |
+
if is_tts and voice_index:
|
| 255 |
+
voice = TTS_VOICES[voice_index - 1]
|
| 256 |
+
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
| 257 |
+
conversation = [{"role": "user", "content": text}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
else:
|
| 259 |
+
voice = None
|
| 260 |
+
text = text.replace(tts_prefix, "").strip()
|
| 261 |
+
conversation = clean_chat_history(chat_history)
|
| 262 |
+
conversation.append({"role": "user", "content": text})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
+
if files:
|
| 265 |
+
if len(files) > 1:
|
| 266 |
+
images = [load_image(image) for image in files]
|
| 267 |
+
elif len(files) == 1:
|
| 268 |
+
images = [load_image(files[0])]
|
| 269 |
+
else:
|
| 270 |
+
images = []
|
| 271 |
+
messages = [{
|
| 272 |
+
"role": "user",
|
| 273 |
+
"content": [
|
| 274 |
+
*[{"type": "image", "image": image} for image in images],
|
| 275 |
+
{"type": "text", "text": text},
|
| 276 |
+
]
|
| 277 |
+
}]
|
| 278 |
+
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 279 |
+
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
|
| 280 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 281 |
+
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
| 282 |
+
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
| 283 |
+
thread.start()
|
| 284 |
+
|
| 285 |
+
buffer = ""
|
| 286 |
+
yield progress_bar_html("Processing with Qwen2VL Ocr")
|
| 287 |
+
for new_text in streamer:
|
| 288 |
+
buffer += new_text
|
| 289 |
+
buffer = buffer.replace("<|im_end|>", "")
|
| 290 |
+
time.sleep(0.01)
|
| 291 |
+
yield buffer
|
| 292 |
+
else:
|
| 293 |
+
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
| 294 |
+
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 295 |
+
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
| 296 |
+
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
| 297 |
+
input_ids = input_ids.to(model.device)
|
| 298 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
| 299 |
+
generation_kwargs = {
|
| 300 |
+
"input_ids": input_ids,
|
| 301 |
+
"streamer": streamer,
|
| 302 |
+
"max_new_tokens": max_new_tokens,
|
| 303 |
+
"do_sample": True,
|
| 304 |
+
"top_p": top_p,
|
| 305 |
+
"top_k": top_k,
|
| 306 |
+
"temperature": temperature,
|
| 307 |
+
"num_beams": 1,
|
| 308 |
+
"repetition_penalty": repetition_penalty,
|
| 309 |
+
}
|
| 310 |
+
t = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 311 |
+
t.start()
|
| 312 |
+
|
| 313 |
+
outputs = []
|
| 314 |
+
for new_text in streamer:
|
| 315 |
+
outputs.append(new_text)
|
| 316 |
+
yield "".join(outputs)
|
| 317 |
+
|
| 318 |
+
final_response = "".join(outputs)
|
| 319 |
+
yield final_response
|
| 320 |
+
|
| 321 |
+
if is_tts and voice:
|
| 322 |
+
output_file = asyncio.run(text_to_speech(final_response, voice))
|
| 323 |
+
yield gr.Audio(output_file, autoplay=True)
|
| 324 |
+
|
| 325 |
+
# -----------------------
|
| 326 |
+
# Gradio Chat Interface
|
| 327 |
+
# -----------------------
|
| 328 |
+
demo = gr.ChatInterface(
|
| 329 |
+
fn=generate,
|
| 330 |
+
additional_inputs=[
|
| 331 |
+
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
|
| 332 |
+
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
|
| 333 |
+
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
|
| 334 |
+
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
|
| 335 |
+
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
|
| 336 |
+
],
|
| 337 |
+
examples=[
|
| 338 |
+
['@realism Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic'],
|
| 339 |
+
["@pixar A young man with light brown wavy hair and light brown eyes sitting in an armchair and looking directly at the camera, pixar style, disney pixar, office background, ultra detailed, 1 man"],
|
| 340 |
+
["@realism A futuristic cityscape with neon lights"],
|
| 341 |
+
["@photoshoot A portrait of a person with dramatic lighting"],
|
| 342 |
+
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
|
| 343 |
+
["Python Program for Array Rotation"],
|
| 344 |
+
["@tts1 Who is Nikola Tesla, and why did he die?"],
|
| 345 |
+
["@clothing Fashionable streetwear in an urban environment"],
|
| 346 |
+
["@interior A modern living room interior with minimalist design"],
|
| 347 |
+
["@fashion A runway model in haute couture"],
|
| 348 |
+
["@minimalistic A simple and elegant design of a serene landscape"],
|
| 349 |
+
["@modern A contemporary art piece with abstract geometric shapes"],
|
| 350 |
+
["@animaliea A cute animal portrait with vibrant colors"],
|
| 351 |
+
["@wallpaper A scenic mountain range perfect for a desktop wallpaper"],
|
| 352 |
+
["@cars A sleek sports car cruising on a city street"],
|
| 353 |
+
["@pencilart A detailed pencil sketch of a historic building"],
|
| 354 |
+
["@artminimalistic An artistic minimalist composition with subtle tones"],
|
| 355 |
+
["@tts2 What causes rainbows to form?"],
|
| 356 |
+
],
|
| 357 |
+
cache_examples=False,
|
| 358 |
+
type="messages",
|
| 359 |
+
description=DESCRIPTION,
|
| 360 |
+
css=css,
|
| 361 |
+
fill_height=True,
|
| 362 |
+
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple", placeholder="default [text, vision] , scroll down examples to explore more art styles"),
|
| 363 |
+
stop_btn="Stop Generation",
|
| 364 |
+
multimodal=True,
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
if __name__ == "__main__":
|
| 368 |
+
demo.queue(max_size=20).launch(ssr_mode=False, share=True)
|