prithivMLmods's picture
Update app.py
c0c6a3d verified
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch
import os
import zipfile
# Load model and processor
model_name = "prithivMLmods/Watermark-Detection-SigLIP2"
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
# Label mapping
id2label = {
"0": "No Watermark",
"1": "Watermark"
}
# Output folders
watermark_dir = "Watermarked"
no_watermark_dir = "No_Watermark"
zip_filename = "watermark_classified_images.zip"
os.makedirs(watermark_dir, exist_ok=True)
os.makedirs(no_watermark_dir, exist_ok=True)
def classify_and_save_watermarks(images):
results = {}
for image_file in images:
image_name = os.path.basename(image_file.name)
image = Image.open(image_file).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
prediction = {id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))}
max_label = max(prediction, key=prediction.get)
max_score = prediction[max_label]
# Save image to appropriate folder
filename = f"{max_label.replace(' ', '_')}_{max_score:.3f}.png"
save_dir = watermark_dir if "Watermark" in max_label else no_watermark_dir
save_path = os.path.join(save_dir, filename)
image.save(save_path)
results[image_name] = {
"predictions": prediction,
"saved_as": filename
}
# Create zip of both folders
with zipfile.ZipFile(zip_filename, "w") as zipf:
for folder in [watermark_dir, no_watermark_dir]:
for root, _, files in os.walk(folder):
for file in files:
file_path = os.path.join(root, file)
arcname = os.path.relpath(file_path, start=os.path.dirname(folder))
zipf.write(file_path, arcname)
return results, zip_filename
# Gradio interface
iface = gr.Interface(
fn=classify_and_save_watermarks,
inputs=gr.File(file_types=["image"], file_count="multiple", label="Upload Images"),
outputs=[
gr.JSON(label="Watermark Predictions"),
gr.File(label="Download Classified Images (ZIP)")
],
title="Watermark Detection and Classification",
description="Upload multiple images to detect watermarks. Images will be saved in 'Watermarked' or 'No Watermark' folders and available for download as a ZIP."
)
if __name__ == "__main__":
iface.launch(ssr_mode=False)