handwritten / main.py
IZERE HIRWA Roger
io
ed74fda
from fastapi import FastAPI, File, UploadFile, Form, HTTPException, Depends, status
from fastapi.responses import HTMLResponse, JSONResponse
from fastapi.staticfiles import StaticFiles
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
import pytesseract
from PIL import Image
import numpy as np
import faiss
import os
import pickle
from pdf2image import convert_from_bytes
import torch
import clip
import io
import json
import uuid
from datetime import datetime, timedelta
from typing import List, Dict, Any, Optional
import base64
import jwt
from passlib.context import CryptContext
app = FastAPI(title="Handwritten Archive Document Digitalization System")
# Security configuration
SECRET_KEY = "your-secret-key-change-this-in-production"
ALGORITHM = "HS256"
ACCESS_TOKEN_EXPIRE_MINUTES = 30
pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto")
security = HTTPBearer()
# Default admin user (change in production)
USERS_DB = {
"admin": {
"username": "admin",
"hashed_password": pwd_context.hash("admin123"),
"is_active": True
}
}
# Mount static files
app.mount("/static", StaticFiles(directory="static"), name="static")
# --- Load or Initialize Model/Index ---
device = "cuda" if torch.cuda.is_available() else "cpu"
clip_model, preprocess = clip.load("ViT-B/32", device=device)
INDEX_PATH = "data/index.faiss"
LABELS_PATH = "data/labels.pkl"
DOCUMENTS_PATH = "data/documents.json"
UPLOADS_DIR = "data/uploads"
# Ensure directories exist
os.makedirs("data", exist_ok=True)
os.makedirs("static", exist_ok=True)
os.makedirs(UPLOADS_DIR, exist_ok=True)
# Initialize index and labels with error handling
index = faiss.IndexFlatL2(512)
labels = []
documents = []
if os.path.exists(INDEX_PATH) and os.path.exists(LABELS_PATH):
try:
index = faiss.read_index(INDEX_PATH)
with open(LABELS_PATH, "rb") as f:
labels = pickle.load(f)
print(f"βœ… Loaded existing index with {len(labels)} labels")
except (RuntimeError, EOFError, pickle.UnpicklingError) as e:
print(f"⚠️ Failed to load existing index: {e}")
print("πŸ”„ Starting with fresh index")
if os.path.exists(INDEX_PATH):
os.remove(INDEX_PATH)
if os.path.exists(LABELS_PATH):
os.remove(LABELS_PATH)
# Load documents database
if os.path.exists(DOCUMENTS_PATH):
try:
with open(DOCUMENTS_PATH, 'r') as f:
documents = json.load(f)
except:
documents = []
# Authentication functions
def verify_password(plain_password, hashed_password):
return pwd_context.verify(plain_password, hashed_password)
def get_password_hash(password):
return pwd_context.hash(password)
def authenticate_user(username: str, password: str):
user = USERS_DB.get(username)
if not user or not verify_password(password, user["hashed_password"]):
return False
return user
def create_access_token(data: dict, expires_delta: Optional[timedelta] = None):
to_encode = data.copy()
if expires_delta:
expire = datetime.utcnow() + expires_delta
else:
expire = datetime.utcnow() + timedelta(minutes=15)
to_encode.update({"exp": expire})
encoded_jwt = jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM)
return encoded_jwt
async def get_current_user(credentials: HTTPAuthorizationCredentials = Depends(security)):
credentials_exception = HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Could not validate credentials",
headers={"WWW-Authenticate": "Bearer"},
)
try:
payload = jwt.decode(credentials.credentials, SECRET_KEY, algorithms=[ALGORITHM])
username: str = payload.get("sub")
if username is None:
raise credentials_exception
except jwt.PyJWTError:
raise credentials_exception
user = USERS_DB.get(username)
if user is None:
raise credentials_exception
return user
# --- Utilities ---
def save_index():
try:
os.makedirs("data", exist_ok=True)
faiss.write_index(index, INDEX_PATH)
with open(LABELS_PATH, "wb") as f:
pickle.dump(labels, f)
except Exception as e:
print(f"❌ Failed to save index: {e}")
def save_documents():
try:
with open(DOCUMENTS_PATH, 'w') as f:
json.dump(documents, f, indent=2)
except Exception as e:
print(f"❌ Failed to save documents: {e}")
def image_from_pdf(pdf_bytes):
try:
images = convert_from_bytes(pdf_bytes, dpi=200)
return images[0]
except Exception as e:
print(f"❌ PDF conversion error: {e}")
return None
def extract_text(image):
try:
if image is None:
return "❌ No image provided"
if isinstance(image, bytes):
image = Image.open(io.BytesIO(image))
elif not isinstance(image, Image.Image):
image = Image.fromarray(image)
if image.mode != 'RGB':
image = image.convert('RGB')
custom_config = r'--oem 3 --psm 6'
text = pytesseract.image_to_string(image, config=custom_config)
return text.strip() if text.strip() else "❓ No text detected"
except Exception as e:
return f"❌ OCR error: {str(e)}"
def get_clip_embedding(image):
try:
if image is None:
return None
if isinstance(image, bytes):
image = Image.open(io.BytesIO(image))
elif not isinstance(image, Image.Image):
image = Image.fromarray(image)
if image.mode != 'RGB':
image = image.convert('RGB')
image_input = preprocess(image).unsqueeze(0).to(device)
with torch.no_grad():
image_features = clip_model.encode_image(image_input)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy()[0]
except Exception as e:
print(f"❌ CLIP embedding error: {e}")
return None
def save_uploaded_file(file_content: bytes, filename: str) -> str:
file_id = str(uuid.uuid4())
file_extension = os.path.splitext(filename)[1]
saved_filename = f"{file_id}{file_extension}"
file_path = os.path.join(UPLOADS_DIR, saved_filename)
with open(file_path, 'wb') as f:
f.write(file_content)
return saved_filename
# --- API Endpoints ---
@app.get("/", response_class=HTMLResponse)
async def dashboard():
with open("static/index.html", "r") as f:
return HTMLResponse(content=f.read())
@app.post("/api/login")
async def login(username: str = Form(...), password: str = Form(...)):
user = authenticate_user(username, password)
if not user:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Incorrect username or password"
)
access_token_expires = timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES)
access_token = create_access_token(
data={"sub": user["username"]}, expires_delta=access_token_expires
)
return {"access_token": access_token, "token_type": "bearer", "username": user["username"]}
@app.post("/api/upload-category")
async def upload_category(
file: UploadFile = File(...),
label: str = Form(...),
current_user: dict = Depends(get_current_user)
):
try:
if not label or not label.strip():
raise HTTPException(status_code=400, detail="Please provide a label")
label = label.strip()
file_content = await file.read()
if file.content_type and file.content_type.startswith('application/pdf'):
image = image_from_pdf(file_content)
else:
image = Image.open(io.BytesIO(file_content))
if image is None:
raise HTTPException(status_code=400, detail="Failed to process image")
embedding = get_clip_embedding(image)
if embedding is None:
raise HTTPException(status_code=400, detail="Failed to generate embedding")
index.add(np.array([embedding]))
labels.append(label)
save_index()
return {"message": f"βœ… Added category '{label}' (Total: {len(labels)} categories)", "status": "success"}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/classify-document")
async def classify_document(
file: UploadFile = File(...),
current_user: dict = Depends(get_current_user)
):
try:
if len(labels) == 0:
raise HTTPException(status_code=400, detail="No categories in database. Please add some first.")
file_content = await file.read()
if file.content_type and file.content_type.startswith('application/pdf'):
image = image_from_pdf(file_content)
else:
image = Image.open(io.BytesIO(file_content))
if image is None:
raise HTTPException(status_code=400, detail="Failed to process image")
embedding = get_clip_embedding(image)
if embedding is None:
raise HTTPException(status_code=400, detail="Failed to generate embedding")
# Search for top 3 matches
k = min(3, len(labels))
D, I = index.search(np.array([embedding]), k=k)
if len(labels) > 0 and I[0][0] < len(labels):
similarity = 1 - D[0][0]
confidence_threshold = 0.35
best_match = labels[I[0][0]]
matches = []
for i in range(min(k, len(D[0]))):
if I[0][i] < len(labels):
sim = 1 - D[0][i]
matches.append({"category": labels[I[0][i]], "similarity": round(sim, 3)})
# Save classified document
if similarity >= confidence_threshold:
saved_filename = save_uploaded_file(file_content, file.filename)
ocr_text = extract_text(image)
document = {
"id": str(uuid.uuid4()),
"filename": saved_filename,
"original_filename": file.filename,
"category": best_match,
"similarity": round(similarity, 3),
"ocr_text": ocr_text,
"upload_date": datetime.now().isoformat(),
"file_path": os.path.join(UPLOADS_DIR, saved_filename)
}
documents.append(document)
save_documents()
return {
"status": "success",
"category": best_match,
"similarity": round(similarity, 3),
"confidence": "high" if similarity >= confidence_threshold else "low",
"matches": matches,
"document_saved": True,
"document_id": document["id"]
}
else:
return {
"status": "low_confidence",
"category": best_match,
"similarity": round(similarity, 3),
"confidence": "low",
"matches": matches,
"document_saved": False
}
raise HTTPException(status_code=400, detail="Document not recognized")
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/api/categories")
async def get_categories(current_user: dict = Depends(get_current_user)):
categories = list(set(labels)) # Remove duplicates
category_counts = {}
for label in labels:
category_counts[label] = category_counts.get(label, 0) + 1
return {"categories": categories, "counts": category_counts}
@app.get("/api/documents/{category}")
async def get_documents_by_category(
category: str,
current_user: dict = Depends(get_current_user)
):
category_documents = [doc for doc in documents if doc["category"] == category]
return {"documents": category_documents, "count": len(category_documents)}
@app.get("/api/documents")
async def get_all_documents(current_user: dict = Depends(get_current_user)):
return {"documents": documents, "count": len(documents)}
@app.delete("/api/documents/{document_id}")
async def delete_document(
document_id: str,
current_user: dict = Depends(get_current_user)
):
try:
# Find document
document_index = None
document_to_delete = None
for i, doc in enumerate(documents):
if doc["id"] == document_id:
document_index = i
document_to_delete = doc
break
if document_to_delete is None:
raise HTTPException(status_code=404, detail="Document not found")
# Delete physical file
file_path = document_to_delete.get("file_path")
if file_path and os.path.exists(file_path):
os.remove(file_path)
# Remove from documents list
documents.pop(document_index)
save_documents()
return {"message": "Document deleted successfully", "status": "success"}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/ocr")
async def ocr_document(
file: UploadFile = File(...),
current_user: dict = Depends(get_current_user)
):
try:
file_content = await file.read()
if file.content_type and file.content_type.startswith('application/pdf'):
image = image_from_pdf(file_content)
else:
image = Image.open(io.BytesIO(file_content))
if image is None:
raise HTTPException(status_code=400, detail="Failed to process image")
text = extract_text(image)
return {"text": text, "status": "success"}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/api/stats")
async def get_stats(current_user: dict = Depends(get_current_user)):
category_stats = {}
for doc in documents:
category = doc["category"]
if category not in category_stats:
category_stats[category] = 0
category_stats[category] += 1
return {
"total_categories": len(set(labels)),
"total_documents": len(documents),
"category_distribution": category_stats
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)