Spaces:
Sleeping
Sleeping
File size: 19,515 Bytes
0931b84 4fa11e6 0931b84 4fa11e6 0931b84 4fa11e6 0931b84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
from flask import Flask, render_template, Response, flash, redirect, url_for, request, jsonify
import cv2
import numpy as np
from unstructured.partition.pdf import partition_pdf
import json
import base64
import io
import os
from PIL import Image, ImageEnhance, ImageDraw
from imutils.perspective import four_point_transform
from dotenv import load_dotenv
import pytesseract
from transformers import AutoProcessor, AutoModelForImageTextToText, AutoModelForVision2Seq
from langchain_community.document_loaders.image_captions import ImageCaptionLoader
from werkzeug.utils import secure_filename
import tempfile
import torch
from langchain_groq import ChatGroq
from langgraph.prebuilt import create_react_agent
import logging
# Configure logging
logging.basicConfig(
level=logging.DEBUG, # Use INFO or ERROR in production
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[
logging.FileHandler("app.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
load_dotenv()
# os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
groq_api_key = os.getenv("GROQ_API_KEY")
llm = ChatGroq(
model="meta-llama/llama-4-maverick-17b-128e-instruct",
temperature=0,
max_tokens=None,
)
app = Flask(__name__)
pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
poppler_path = r"C:\poppler-23.11.0\Library\bin"
count = 0
PDF_GET = r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images\scratch_crab.pdf"
OUTPUT_FOLDER = "OUTPUTS"
DETECTED_IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "DETECTED_IMAGE")
IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "SCANNED_IMAGE")
JSON_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "EXTRACTED_JSON")
for path in [OUTPUT_FOLDER, IMAGE_FOLDER_PATH, DETECTED_IMAGE_FOLDER_PATH, JSON_FOLDER_PATH]:
os.makedirs(path, exist_ok=True)
# Model Initialization
try:
smolvlm256m_processor = AutoProcessor.from_pretrained(
"HuggingFaceTB/SmolVLM-256M-Instruct")
# smolvlm256m_model = AutoModelForImageTextToText.from_pretrained("HuggingFaceTB/SmolVLM-256M-Instruct").to("cpu")
smolvlm256m_model = AutoModelForVision2Seq.from_pretrained(
"HuggingFaceTB/SmolVLM-256M-Instruct",
torch_dtype=torch.bfloat16 if hasattr(
torch, "bfloat16") else torch.float32,
_attn_implementation="eager"
).to("cpu")
except Exception as e:
raise RuntimeError(f"β Failed to load SmolVLM model: {str(e)}")
# SmolVLM Image Captioning functioning
def get_smolvlm_caption(image: Image.Image, prompt: str = "") -> str:
try:
# Ensure exactly one <image> token
if "<image>" not in prompt:
prompt = f"<image> {prompt.strip()}"
num_image_tokens = prompt.count("<image>")
if num_image_tokens != 1:
raise ValueError(
f"Prompt must contain exactly 1 <image> token. Found {num_image_tokens}")
inputs = smolvlm256m_processor(
images=[image], text=[prompt], return_tensors="pt").to("cpu")
output_ids = smolvlm256m_model.generate(**inputs, max_new_tokens=100)
return smolvlm256m_processor.decode(output_ids[0], skip_special_tokens=True)
except Exception as e:
return f"β Error during caption generation: {str(e)}"
# --- FUNCTION: Extract images from saved PDF ---
def extract_images_from_pdf(pdf_path, output_json_path):
''' Extract images from PDF and generate structured sprite JSON '''
try:
pdf_filename = os.path.splitext(os.path.basename(pdf_path))[
0] # e.g., "scratch_crab"
pdf_dir_path = os.path.dirname(pdf_path).replace("/", "\\")
# Create subfolders
extracted_image_subdir = os.path.join(
DETECTED_IMAGE_FOLDER_PATH, pdf_filename)
json_subdir = os.path.join(JSON_FOLDER_PATH, pdf_filename)
os.makedirs(extracted_image_subdir, exist_ok=True)
os.makedirs(json_subdir, exist_ok=True)
# Output paths
output_json_path = os.path.join(json_subdir, "extracted.json")
final_json_path = os.path.join(json_subdir, "extracted_sprites.json")
try:
elements = partition_pdf(
filename=pdf_path,
strategy="hi_res",
extract_image_block_types=["Image"],
extract_image_block_to_payload=True, # Set to True to get base64 in output
)
except Exception as e:
raise RuntimeError(
f"β Failed to extract images from PDF: {str(e)}")
try:
with open(output_json_path, "w") as f:
json.dump([element.to_dict()
for element in elements], f, indent=4)
except Exception as e:
raise RuntimeError(f"β Failed to write extracted.json: {str(e)}")
try:
# Display extracted images
with open(output_json_path, 'r') as file:
file_elements = json.load(file)
except Exception as e:
raise RuntimeError(f"β Failed to read extracted.json: {str(e)}")
# Prepare manipulated sprite JSON structure
manipulated_json = {}
# SET A SYSTEM PROMPT
system_prompt = """
You are an expert in visual scene understanding.
Your Job is to analyze an image and respond acoording if asked for name give simple name by analyzing it and if ask for descrption generate a short description covering its elements.
Guidelines:
- Focus only the images given in Square Shape.
- Don't Consider Blank areas in Image as.
- Don't include generic summary or explanation outside the fields.
Return only string.
"""
agent = create_react_agent(
model=llm,
tools=[],
prompt=system_prompt
)
# If JSON already exists, load it and find the next available Sprite number
if os.path.exists(final_json_path):
with open(final_json_path, "r") as existing_file:
manipulated = json.load(existing_file)
# Determine the next available index (e.g., Sprite 4 if 1β3 already exist)
existing_keys = [int(k.replace("Sprite ", ""))
for k in manipulated.keys()]
start_count = max(existing_keys, default=0) + 1
else:
start_count = 1
sprite_count = start_count
for i, element in enumerate(file_elements):
if "image_base64" in element["metadata"]:
try:
image_data = base64.b64decode(
element["metadata"]["image_base64"])
image = Image.open(io.BytesIO(image_data)).convert("RGB")
image.show(title=f"Extracted Image {i+1}")
image_path = os.path.join(
extracted_image_subdir, f"Sprite_{i+1}.png")
image.save(image_path)
with open(image_path, "rb") as image_file:
image_bytes = image_file.read()
img_base64 = base64.b64encode(image_bytes).decode("utf-8")
# description = get_smolvlm_caption(image, prompt="Give a brief Description")
# name = get_smolvlm_caption(image, prompt="give a short name/title of this Image.")
def clean_caption_output(raw_output: str, prompt: str) -> str:
answer = raw_output.replace(prompt, '').replace(
"<image>", '').strip(" :-\n")
return answer
prompt_description = "Give a brief Captioning."
prompt_name = "give a short name caption of this Image."
content1 = [
{
"type": "text",
"text": f"{prompt_description}"
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{img_base64}"
}
}
]
response1 = agent.invoke(
{"messages": [{"role": "user", "content": content1}]})
print(response1)
description = response1["messages"][-1].content
content2 = [
{
"type": "text",
"text": f"{prompt_name}"
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{img_base64}"
}
}
]
response2 = agent.invoke(
{"messages": [{"role": "user", "content": content2}]})
print(response2)
name = response2["messages"][-1].content
# raw_description = get_smolvlm_caption(image, prompt=prompt_description)
# raw_name = get_smolvlm_caption(image, prompt=prompt_name)
# description = clean_caption_output(raw_description, prompt_description)
# name = clean_caption_output(raw_name, prompt_name)
manipulated_json[f"Sprite {sprite_count}"] = {
"name": name,
"base64": element["metadata"]["image_base64"],
"file-path": pdf_dir_path,
"description": description
}
sprite_count += 1
except Exception as e:
print(f"β οΈ Error processing Sprite {i+1}: {str(e)}")
# Save manipulated JSON
with open(final_json_path, "w") as sprite_file:
json.dump(manipulated_json, sprite_file, indent=4)
print(f"β
Manipulated sprite JSON saved: {final_json_path}")
return final_json_path, manipulated_json
except Exception as e:
raise RuntimeError(f"β Error in extract_images_from_pdf: {str(e)}")
def similarity_matching(input_json_path: str) -> str:
import uuid
import shutil
import tempfile
from langchain_experimental.open_clip.open_clip import OpenCLIPEmbeddings
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
from io import BytesIO
logger.info("π Running similarity matching...")
# ============================== #
# DEFINE PATHS #
# ============================== #
backdrop_images_path = os.getenv("BACKDROP_FOLDER_PATH", "/app/reference/backdrops")
sprite_images_path = os.getenv("SPRITE_FOLDER_PATH", "/app/reference/sprites")
image_dirs = [backdrop_images_path, sprite_images_path]
# ================================================= #
# Generate Random UUID for project folder name #
# ================================================= #
random_id = str(uuid.uuid4()).replace('-', '')
project_folder = os.path.join("outputs", f"project_{random_id}")
# =========================================================================== #
# Create empty json in project_{random_id} folder #
# =========================================================================== #
os.makedirs(project_folder, exist_ok=True)
project_json_path = os.path.join(project_folder, "project.json")
# ============================== #
# READ SPRITE METADATA #
# ============================== #
with open(input_json_path, 'r') as f:
sprites_data = json.load(f)
sprite_ids, texts, sprite_base64 = [], [], []
for sid, sprite in sprites_data.items():
sprite_ids.append(sid)
texts.append(
"This is " + sprite.get("description", sprite.get("name", "")))
sprite_base64.append(sprite["base64"])
# ============================== #
# INITIALIZE CLIP EMBEDDER #
# ============================== #
clip_embd = OpenCLIPEmbeddings()
# # ========================================= #
# # Walk folders to collect all image paths #
# # ========================================= #
# folder_image_paths = []
# for image_dir in image_dirs:
# for root, _, files in os.walk(image_dir):
# for fname in files:
# if fname.lower().endswith((".png", ".jpg", ".jpeg")):
# folder_image_paths.append(os.path.join(root, fname))
# # ============================== #
# # EMBED FOLDER IMAGES (REF) #
# # ============================== #
# img_features = clip_embd.embed_image(folder_image_paths)
# # ============================== #
# # Store image embeddings #
# # ============================== #
# embedding_json = []
# for i, path in enumerate(folder_image_paths):
# embedding_json.append({
# "name":os.path.basename(path),
# "file-path": path,
# "embeddings": list(img_features[i])
# })
# # Save to embeddings.json
# with open(f"{OUTPUT_FOLDER}/embeddings.json", "w") as f:
# json.dump(embedding_json, f, indent=2)
# ============================== #
# DECODE SPRITE IMAGES #
# ============================== #
temp_dir = tempfile.mkdtemp()
sprite_image_paths = []
for idx, b64 in enumerate(sprite_base64):
image_data = base64.b64decode(b64.split(",")[-1])
img = Image.open(BytesIO(image_data)).convert("RGB")
temp_path = os.path.join(temp_dir, f"sprite_{idx}.png")
img.save(temp_path)
sprite_image_paths.append(temp_path)
# ============================== #
# EMBED SPRITE IMAGES #
# ============================== #
sprite_features = clip_embd.embed_image(sprite_image_paths)
# ============================== #
# COMPUTE SIMILARITIES #
# ============================== #
with open(f"{OUTPUT_FOLDER}/embeddings.json", "r") as f:
embedding_json = json.load(f)
img_matrix = np.array([img["embeddings"] for img in embedding_json])
sprite_matrix = np.array(sprite_features)
similarity = np.matmul(sprite_matrix, img_matrix.T)
most_similar_indices = np.argmax(similarity, axis=1)
# ============= Match and copy ================
project_data, backdrop_data = [], []
copied_folders = set()
for sprite_idx, matched_idx in enumerate(most_similar_indices):
matched_entry = embedding_json[matched_idx]
# matched_image_path = os.path.normpath(folder_image_paths[matched_idx])
matched_image_path = os.path.normpath(matched_entry["file-path"])
matched_folder = os.path.dirname(matched_image_path)
if matched_folder in copied_folders:
continue
copied_folders.add(matched_folder)
# Sprite
sprite_json_path = os.path.join(matched_folder, 'sprite.json')
if os.path.exists(sprite_json_path):
with open(sprite_json_path, 'r') as f:
sprite_data = json.load(f)
project_data.append(sprite_data)
for fname in os.listdir(matched_folder):
if fname not in {os.path.basename(matched_image_path), 'sprite.json'}:
shutil.copy2(os.path.join(
matched_folder, fname), project_folder)
# Backdrop
if matched_image_path.startswith(os.path.normpath(backdrop_images_path)):
backdrop_json_path = os.path.join(matched_folder, 'project.json')
if os.path.exists(backdrop_json_path):
with open(backdrop_json_path, 'r') as f:
backdrop_json_data = json.load(f)
for target in backdrop_json_data.get("targets", []):
if target.get("isStage"):
backdrop_data.append(target)
for fname in os.listdir(matched_folder):
if fname not in {os.path.basename(matched_image_path), 'project.json'}:
shutil.copy2(os.path.join(
matched_folder, fname), project_folder)
# Merge JSON structure
final_project = {
"targets": [],
"monitors": [],
"extensions": [],
"meta": {
"semver": "3.0.0",
"vm": "11.3.0",
"agent": "OpenAI ScratchVision Agent"
}
}
for sprite in project_data:
if not sprite.get("isStage", False):
final_project["targets"].append(sprite)
if backdrop_data:
all_costumes, sounds = [], []
for idx, bd in enumerate(backdrop_data):
all_costumes.extend(bd.get("costumes", []))
if idx == 0 and "sounds" in bd:
sounds = bd["sounds"]
final_project["targets"].append({
"isStage": True,
"name": "Stage",
"variables": {},
"lists": {},
"broadcasts": {},
"blocks": {},
"comments": {},
"currentCostume": 1 if len(all_costumes) > 1 else 0,
"costumes": all_costumes,
"sounds": sounds,
"volume": 100,
"layerOrder": 0,
"tempo": 60,
"videoTransparency": 50,
"videoState": "on",
"textToSpeechLanguage": None
})
with open(project_json_path, 'w') as f:
json.dump(final_project, f, indent=2)
logger.info(f"π Final project saved: {project_json_path}")
return project_json_path
@app.route('/')
def index():
return render_template('app_index.html')
# API endpoint
@app.route('/process_pdf', methods=['POST'])
def process_pdf():
try:
logger.info("Received request to process PDF.")
if 'pdf_file' not in request.files:
logger.warning("No PDF file found in request.")
return jsonify({"error": "Missing PDF file in form-data with key 'pdf_file'"}), 400
pdf_file = request.files['pdf_file']
if pdf_file.filename == '':
return jsonify({"error": "Empty filename"}), 400
# Save the uploaded PDF temporarily
filename = secure_filename(pdf_file.filename)
temp_dir = tempfile.mkdtemp()
saved_pdf_path = os.path.join(temp_dir, filename)
pdf_file.save(saved_pdf_path)
logger.info(f"Saved uploaded PDF to: {saved_pdf_path}")
# Extract & process
json_path = None
output_path, result = extract_images_from_pdf(
saved_pdf_path, json_path)
project_output = similarity_matching(output_path)
logger.info("Received request to process PDF.")
return jsonify({
"message": "β
PDF processed successfully",
"output_json": output_path,
"sprites": result,
"project_output_json": project_output
})
except Exception as e:
logger.exception("β Failed to process PDF")
return jsonify({"error": f"β Failed to process PDF: {str(e)}"}), 500
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860, debug=True)
|