purpleriann's picture
Upload folder using huggingface_hub
a22e84b verified
import opik
from fastapi import FastAPI, HTTPException
from opik import opik_context
from pydantic import BaseModel
from llm_engineering import settings
from llm_engineering.application.rag.retriever import ContextRetriever
from llm_engineering.application.utils import misc
from llm_engineering.domain.embedded_chunks import EmbeddedChunk
from llm_engineering.infrastructure.opik_utils import configure_opik
from llm_engineering.model.inference import InferenceExecutor, LLMInferenceSagemakerEndpoint
configure_opik()
app = FastAPI()
class QueryRequest(BaseModel):
query: str
class QueryResponse(BaseModel):
answer: str
@opik.track
def call_llm_service(query: str, context: str | None) -> str:
llm = LLMInferenceSagemakerEndpoint(
endpoint_name=settings.SAGEMAKER_ENDPOINT_INFERENCE, inference_component_name=None
)
answer = InferenceExecutor(llm, query, context).execute()
return answer
@opik.track
def rag(query: str) -> str:
retriever = ContextRetriever(mock=False)
documents = retriever.search(query, k=3)
context = EmbeddedChunk.to_context(documents)
answer = call_llm_service(query, context)
opik_context.update_current_trace(
tags=["rag"],
metadata={
"model_id": settings.HF_MODEL_ID,
"embedding_model_id": settings.TEXT_EMBEDDING_MODEL_ID,
"temperature": settings.TEMPERATURE_INFERENCE,
"query_tokens": misc.compute_num_tokens(query),
"context_tokens": misc.compute_num_tokens(context),
"answer_tokens": misc.compute_num_tokens(answer),
},
)
return answer
@app.post("/rag", response_model=QueryResponse)
async def rag_endpoint(request: QueryRequest):
try:
answer = rag(query=request.query)
return {"answer": answer}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e)) from e