File size: 6,168 Bytes
703c654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d665cb
703c654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
626e0aa
703c654
 
626e0aa
 
 
 
703c654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import gradio as gr

import torch
import io
from PIL import Image
from transformers import (
    AutoImageProcessor,
    AutoTokenizer,
    AutoModelForCausalLM,
)
import numpy as np
model_root = "qihoo360/fg-clip-base"

model = AutoModelForCausalLM.from_pretrained(model_root,trust_remote_code=True)
device = model.device
tokenizer = AutoTokenizer.from_pretrained(model_root)
image_processor = AutoImageProcessor.from_pretrained(model_root)

import math
import matplotlib
matplotlib.use('Agg') 
import matplotlib.pyplot as plt

def postprocess_result(probs, labels):
    pro_output = {labels[i]: probs[i] for i in range(len(labels))}

    return pro_output


def Retrieval(image, candidate_labels):
    """
    Takes an image and a comma-separated string of candidate labels,
    and returns the classification scores.
    """
    image_size=224
    image = image.convert("RGB")
    image = image.resize((image_size,image_size))
    image_input = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].to(device)
    walk_short_pos = True

    caption_input = torch.tensor(tokenizer(candidate_labels, max_length=77, padding="max_length", truncation=True).input_ids, dtype=torch.long, device=device)

    with torch.no_grad():
        image_feature = model.get_image_features(image_input)
        text_feature = model.get_text_features(caption_input,walk_short_pos=walk_short_pos)
        image_feature = image_feature / image_feature.norm(p=2, dim=-1, keepdim=True)
        text_feature = text_feature / text_feature.norm(p=2, dim=-1, keepdim=True)

        logits_per_image = image_feature @ text_feature.T
        logits_per_image = model.logit_scale.exp() * logits_per_image
        probs = logits_per_image.softmax(dim=1) 
    results = probs[0].tolist()
    return results


def Get_Densefeature(image, candidate_labels):
    """
    Takes an image and a comma-separated string of candidate labels,
    and returns the classification scores.
    """
    candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",") if label !=""]
    # print(candidate_labels)

    image_size=224
    image = image.convert("RGB")
    image = image.resize((image_size,image_size))
    image_input = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].to(device)

    with torch.no_grad():
        dense_image_feature = model.get_image_dense_features(image_input)
        captions = [candidate_labels[0]]
        caption_input = torch.tensor(tokenizer(captions, max_length=77, padding="max_length", truncation=True).input_ids, dtype=torch.long, device=device)
        text_feature = model.get_text_features(caption_input,walk_short_pos=True)
        text_feature = text_feature / text_feature.norm(p=2, dim=-1, keepdim=True)
        dense_image_feature = dense_image_feature / dense_image_feature.norm(p=2, dim=-1, keepdim=True)

    similarity = dense_image_feature.squeeze() @ text_feature.squeeze().T
    similarity = similarity.cpu().numpy()
    patch_size = int(math.sqrt(similarity.shape[0]))


    original_shape = (patch_size, patch_size)
    show_image = similarity.reshape(original_shape) 
    # normalized = (show_image - show_image.min()) / (show_image.max() - show_image.min())

    # def viridis_colormap(x):

    #     r = np.clip(1.1746 * x - 0.1776, 0, 1)
    #     g = np.clip(2.0 * x - 0.7, 0, 1)
    #     b = np.clip(-2.0 * x + 1.7, 0, 1)
    #     return np.stack([r, g, b], axis=-1)

    # color_mapped = viridis_colormap(normalized)

    # color_mapped_uint8 = (color_mapped * 255).astype(np.uint8)

    # pil_img = Image.fromarray(color_mapped_uint8)
    # pil_img = pil_img.resize((512,512))

    fig = plt.figure(figsize=(6, 6))
    plt.imshow(show_image)
    plt.title('similarity Visualization')
    plt.axis('off')  

    buf = io.BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)  
    plt.close(fig)

    pil_img = Image.open(buf)
    # buf.close()
    return  pil_img




def infer(image, candidate_labels):
    candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",") if label !=""]
    fg_probs = Retrieval(image, candidate_labels)
    return postprocess_result(fg_probs,candidate_labels)


with gr.Blocks() as demo:
    gr.Markdown("# FG-CLIP Retrieval")
    gr.Markdown(
        
        "This app uses the FG-CLIP model (qihoo360/fg-clip-base) for retrieval on CPU :"
    )
    gr.Markdown(
        "(Run Densefeature) only support only one class!"
    )
    
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(type="pil")
            text_input = gr.Textbox(label="Input a list of labels (comma seperated)")
            run_button = gr.Button("Run Retrieval", visible=True)
            dfs_button = gr.Button("Run Densefeature", visible=True)
        with gr.Column():
            fg_output = gr.Label(label="FG-CLIP Output", num_top_classes=11)
            dfs_output = gr.Image(label="Similarity Visualization", type="pil")
            
    examples = [
        # ["./baklava.jpg", "dessert on a plate, a serving of baklava, a plate and spoon"],
        # ["./dog.jpg", "A light brown wood stool, A bucket with a body made of dark brown plastic, A black velvet back cover for a cellular telephone, A green ball with a perforated pattern, A light blue plastic helmet made of plastic, A grey slipper made of wool, A newspaper with white and black perforated printed on a paper texture, A blue dog with a white colored head, A yellow sponge with a dark green rough surface, A book with white, dark orange and brown pages made of paper, A black ceramic scarf with a body made of fabric."],
        ["./Landscape.jpg", "red grass, yellow grass, green grass"],
        ["./cat.jpg", "two sleeping cats, two cats playing, three cats laying down"],
        ["./cat_dfclor.jpg", "white cat,"],
    ]
    gr.Examples(
        examples=examples,
        inputs=[image_input, text_input],
        # outputs=fg_output,
        # fn=infer,
    )
    run_button.click(fn=infer, inputs=[image_input, text_input], outputs=fg_output)
    dfs_button.click(fn=Get_Densefeature, inputs=[image_input, text_input], outputs=dfs_output)
demo.launch()