Spaces:
Running
on
T4
Running
on
T4
import ipdb # noqa: F401 | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from diffusionsfm.model.dit import DiT | |
from diffusionsfm.model.feature_extractors import PretrainedVAE, SpatialDino | |
from diffusionsfm.model.blocks import _make_fusion_block, _make_scratch | |
from diffusionsfm.model.scheduler import NoiseScheduler | |
# functional implementation | |
def nearest_neighbor_upsample(x: torch.Tensor, scale_factor: int): | |
"""Upsample {x} (NCHW) by scale factor {scale_factor} using nearest neighbor interpolation.""" | |
s = scale_factor | |
return ( | |
x.reshape(*x.shape, 1, 1) | |
.expand(*x.shape, s, s) | |
.transpose(-2, -3) | |
.reshape(*x.shape[:2], *(s * hw for hw in x.shape[2:])) | |
) | |
class ProjectReadout(nn.Module): | |
def __init__(self, in_features, start_index=1): | |
super(ProjectReadout, self).__init__() | |
self.start_index = start_index | |
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU()) | |
def forward(self, x): | |
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :]) | |
features = torch.cat((x[:, self.start_index :], readout), -1) | |
return self.project(features) | |
class RayDiffuserDPT(nn.Module): | |
def __init__( | |
self, | |
model_type="dit", | |
depth=8, | |
width=16, | |
hidden_size=1152, | |
P=1, | |
max_num_images=1, | |
noise_scheduler=None, | |
freeze_encoder=True, | |
feature_extractor="dino", | |
append_ndc=True, | |
use_unconditional=False, | |
diffuse_depths=False, | |
depth_resolution=1, | |
encoder_features=False, | |
use_homogeneous=False, | |
freeze_transformer=False, | |
cond_depth_mask=False, | |
): | |
super().__init__() | |
if noise_scheduler is None: | |
self.noise_scheduler = NoiseScheduler() | |
else: | |
self.noise_scheduler = noise_scheduler | |
self.diffuse_depths = diffuse_depths | |
self.depth_resolution = depth_resolution | |
self.use_homogeneous = use_homogeneous | |
self.ray_dim = 3 | |
if self.use_homogeneous: | |
self.ray_dim += 1 | |
self.ray_dim += self.ray_dim * self.depth_resolution**2 | |
if self.diffuse_depths: | |
self.ray_dim += 1 | |
self.append_ndc = append_ndc | |
self.width = width | |
self.max_num_images = max_num_images | |
self.model_type = model_type | |
self.use_unconditional = use_unconditional | |
self.cond_depth_mask = cond_depth_mask | |
self.encoder_features = encoder_features | |
if feature_extractor == "dino": | |
self.feature_extractor = SpatialDino( | |
freeze_weights=freeze_encoder, | |
num_patches_x=width, | |
num_patches_y=width, | |
activation_hooks=self.encoder_features, | |
) | |
self.feature_dim = self.feature_extractor.feature_dim | |
elif feature_extractor == "vae": | |
self.feature_extractor = PretrainedVAE( | |
freeze_weights=freeze_encoder, num_patches_x=width, num_patches_y=width | |
) | |
self.feature_dim = self.feature_extractor.feature_dim | |
else: | |
raise Exception(f"Unknown feature extractor {feature_extractor}") | |
if self.use_unconditional: | |
self.register_parameter( | |
"null_token", nn.Parameter(torch.randn(self.feature_dim, 1, 1)) | |
) | |
self.input_dim = self.feature_dim * 2 | |
if self.append_ndc: | |
self.input_dim += 2 | |
if model_type == "dit": | |
self.ray_predictor = DiT( | |
in_channels=self.input_dim, | |
out_channels=self.ray_dim, | |
width=width, | |
depth=depth, | |
hidden_size=hidden_size, | |
max_num_images=max_num_images, | |
P=P, | |
) | |
if freeze_transformer: | |
for param in self.ray_predictor.parameters(): | |
param.requires_grad = False | |
# Fusion blocks | |
self.f = 256 | |
if self.encoder_features: | |
feature_lens = [ | |
self.feature_extractor.feature_dim, | |
self.feature_extractor.feature_dim, | |
self.ray_predictor.hidden_size, | |
self.ray_predictor.hidden_size, | |
] | |
else: | |
feature_lens = [self.ray_predictor.hidden_size] * 4 | |
self.scratch = _make_scratch(feature_lens, 256, groups=1, expand=False) | |
self.scratch.refinenet1 = _make_fusion_block( | |
self.f, use_bn=False, use_ln=False, dpt_time=True, resolution=128 | |
) | |
self.scratch.refinenet2 = _make_fusion_block( | |
self.f, use_bn=False, use_ln=False, dpt_time=True, resolution=64 | |
) | |
self.scratch.refinenet3 = _make_fusion_block( | |
self.f, use_bn=False, use_ln=False, dpt_time=True, resolution=32 | |
) | |
self.scratch.refinenet4 = _make_fusion_block( | |
self.f, use_bn=False, use_ln=False, dpt_time=True, resolution=16 | |
) | |
self.scratch.input_conv = nn.Conv2d( | |
self.ray_dim + int(self.cond_depth_mask), | |
self.feature_dim, | |
kernel_size=16, | |
stride=16, | |
padding=0 | |
) | |
self.scratch.output_conv = nn.Sequential( | |
nn.Conv2d(self.f, self.f // 2, kernel_size=3, stride=1, padding=1), | |
nn.LeakyReLU(), | |
nn.Conv2d(self.f // 2, 32, kernel_size=3, stride=1, padding=1), | |
nn.LeakyReLU(), | |
nn.Conv2d(32, self.ray_dim, kernel_size=1, stride=1, padding=0), | |
nn.Identity(), | |
) | |
if self.encoder_features: | |
self.project_opers = nn.ModuleList([ | |
ProjectReadout(in_features=self.feature_extractor.feature_dim), | |
ProjectReadout(in_features=self.feature_extractor.feature_dim), | |
]) | |
def forward_noise( | |
self, x, t, epsilon=None, zero_out_mask=None | |
): | |
""" | |
Applies forward diffusion (adds noise) to the input. | |
If a mask is provided, the noise is only applied to the masked inputs. | |
""" | |
t = t.reshape(-1, 1, 1, 1, 1) | |
if epsilon is None: | |
epsilon = torch.randn_like(x) | |
else: | |
epsilon = epsilon.reshape(x.shape) | |
alpha_bar = self.noise_scheduler.alphas_cumprod[t] | |
x_noise = torch.sqrt(alpha_bar) * x + torch.sqrt(1 - alpha_bar) * epsilon | |
if zero_out_mask is not None and self.cond_depth_mask: | |
x_noise = zero_out_mask * x_noise | |
return x_noise, epsilon | |
def forward( | |
self, | |
features=None, | |
images=None, | |
rays=None, | |
rays_noisy=None, | |
t=None, | |
ndc_coordinates=None, | |
unconditional_mask=None, | |
encoder_patches=16, | |
depth_mask=None, | |
multiview_unconditional=False, | |
indices=None, | |
): | |
""" | |
Args: | |
images: (B, N, 3, H, W). | |
t: (B,). | |
rays: (B, N, 6, H, W). | |
rays_noisy: (B, N, 6, H, W). | |
ndc_coordinates: (B, N, 2, H, W). | |
unconditional_mask: (B, N) or (B,). Should be 1 for unconditional samples | |
and 0 else. | |
""" | |
if features is None: | |
# VAE expects 256x256 images while DINO expects 224x224 images. | |
# Both feature extractors support autoresize=True, but ideally we should | |
# set this to be false and handle in the dataloader. | |
features = self.feature_extractor(images, autoresize=True) | |
B = features.shape[0] | |
if unconditional_mask is not None and self.use_unconditional: | |
null_token = self.null_token.reshape(1, 1, self.feature_dim, 1, 1) | |
unconditional_mask = unconditional_mask.reshape(B, -1, 1, 1, 1) | |
features = ( | |
features * (1 - unconditional_mask) + null_token * unconditional_mask | |
) | |
if isinstance(t, int) or isinstance(t, np.int64): | |
t = torch.ones(1, dtype=int).to(features.device) * t | |
else: | |
t = t.reshape(B) | |
if rays_noisy is None: | |
if self.cond_depth_mask: | |
rays_noisy, epsilon = self.forward_noise( | |
rays, t, zero_out_mask=depth_mask.unsqueeze(2) | |
) | |
else: | |
rays_noisy, epsilon = self.forward_noise( | |
rays, t | |
) | |
else: | |
epsilon = None | |
# DOWNSAMPLE RAYS | |
B, N, C, H, W = rays_noisy.shape | |
if self.cond_depth_mask: | |
if depth_mask is None: | |
depth_mask = torch.ones_like(rays_noisy[:, :, 0]) | |
ray_repr = torch.cat([rays_noisy, depth_mask.unsqueeze(2)], dim=2) | |
else: | |
ray_repr = rays_noisy | |
ray_repr = self.scratch.input_conv(ray_repr.reshape(B * N, -1, H, W)) | |
_, CP, HP, WP = ray_repr.shape | |
ray_repr = ray_repr.reshape(B, N, CP, HP, WP) | |
scene_features = torch.cat([features, ray_repr], dim=2) | |
if self.append_ndc: | |
scene_features = torch.cat([scene_features, ndc_coordinates], dim=2) | |
# DIT FORWARD PASS | |
activations = self.ray_predictor( | |
scene_features, | |
t, | |
return_dpt_activations=True, | |
multiview_unconditional=multiview_unconditional, | |
) | |
# PROJECT ENCODER ACTIVATIONS & RESHAPE | |
if self.encoder_features: | |
for i in range(2): | |
name = f"encoder{i+1}" | |
if indices is not None: | |
act = self.feature_extractor.activations[name][indices] | |
else: | |
act = self.feature_extractor.activations[name] | |
act = self.project_opers[i](act).permute(0, 2, 1) | |
act = act.reshape( | |
( | |
B * N, | |
self.feature_extractor.feature_dim, | |
encoder_patches, | |
encoder_patches, | |
) | |
) | |
activations[i] = act | |
# UPSAMPLE ACTIVATIONS | |
for i, act in enumerate(activations): | |
k = 3 - i | |
activations[i] = nearest_neighbor_upsample(act, 2**k) | |
# FUSION BLOCKS | |
layer_1_rn = self.scratch.layer1_rn(activations[0]) | |
layer_2_rn = self.scratch.layer2_rn(activations[1]) | |
layer_3_rn = self.scratch.layer3_rn(activations[2]) | |
layer_4_rn = self.scratch.layer4_rn(activations[3]) | |
# RESHAPE TIMESTEPS | |
if t.shape[0] == B: | |
t = t.unsqueeze(-1).repeat((1, N)).reshape(B * N) | |
elif t.shape[0] == 1 and B > 1: | |
t = t.repeat((B * N)) | |
else: | |
assert False | |
path_4 = self.scratch.refinenet4(layer_4_rn, t=t) | |
path_3 = self.scratch.refinenet3(path_4, activation=layer_3_rn, t=t) | |
path_2 = self.scratch.refinenet2(path_3, activation=layer_2_rn, t=t) | |
path_1 = self.scratch.refinenet1(path_2, activation=layer_1_rn, t=t) | |
epsilon_pred = self.scratch.output_conv(path_1) | |
epsilon_pred = epsilon_pred.reshape((B, N, C, H, W)) | |
return epsilon_pred, epsilon | |