Spaces:
Sleeping
Sleeping
| language: | |
| - multilingual | |
| - ar | |
| - bg | |
| - ca | |
| - cs | |
| - da | |
| - de | |
| - el | |
| - en | |
| - es | |
| - et | |
| - fa | |
| - fi | |
| - fr | |
| - gl | |
| - gu | |
| - he | |
| - hi | |
| - hr | |
| - hu | |
| - hy | |
| - id | |
| - it | |
| - ja | |
| - ka | |
| - ko | |
| - ku | |
| - lt | |
| - lv | |
| - mk | |
| - mn | |
| - mr | |
| - ms | |
| - my | |
| - nb | |
| - nl | |
| - pl | |
| - pt | |
| - ro | |
| - ru | |
| - sk | |
| - sl | |
| - sq | |
| - sr | |
| - sv | |
| - th | |
| - tr | |
| - uk | |
| - ur | |
| - vi | |
| license: apache-2.0 | |
| library_name: sentence-transformers | |
| tags: | |
| - sentence-transformers | |
| - feature-extraction | |
| - sentence-similarity | |
| - transformers | |
| language_bcp47: | |
| - fr-ca | |
| - pt-br | |
| - zh-cn | |
| - zh-tw | |
| pipeline_tag: sentence-similarity | |
| # sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 | |
| This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. | |
| ## Usage (Sentence-Transformers) | |
| Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: | |
| ``` | |
| pip install -U sentence-transformers | |
| ``` | |
| Then you can use the model like this: | |
| ```python | |
| from sentence_transformers import SentenceTransformer | |
| sentences = ["This is an example sentence", "Each sentence is converted"] | |
| model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2') | |
| embeddings = model.encode(sentences) | |
| print(embeddings) | |
| ``` | |
| ## Usage (HuggingFace Transformers) | |
| Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. | |
| ```python | |
| from transformers import AutoTokenizer, AutoModel | |
| import torch | |
| # Mean Pooling - Take attention mask into account for correct averaging | |
| def mean_pooling(model_output, attention_mask): | |
| token_embeddings = model_output[0] #First element of model_output contains all token embeddings | |
| input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | |
| return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) | |
| # Sentences we want sentence embeddings for | |
| sentences = ['This is an example sentence', 'Each sentence is converted'] | |
| # Load model from HuggingFace Hub | |
| tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2') | |
| model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2') | |
| # Tokenize sentences | |
| encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') | |
| # Compute token embeddings | |
| with torch.no_grad(): | |
| model_output = model(**encoded_input) | |
| # Perform pooling. In this case, max pooling. | |
| sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) | |
| print("Sentence embeddings:") | |
| print(sentence_embeddings) | |
| ``` | |
| ## Evaluation Results | |
| For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) | |
| ## Full Model Architecture | |
| ``` | |
| SentenceTransformer( | |
| (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel | |
| (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) | |
| ) | |
| ``` | |
| ## Citing & Authors | |
| This model was trained by [sentence-transformers](https://www.sbert.net/). | |
| If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): | |
| ```bibtex | |
| @inproceedings{reimers-2019-sentence-bert, | |
| title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", | |
| author = "Reimers, Nils and Gurevych, Iryna", | |
| booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", | |
| month = "11", | |
| year = "2019", | |
| publisher = "Association for Computational Linguistics", | |
| url = "http://arxiv.org/abs/1908.10084", | |
| } | |
| ``` |