Spaces:
Sleeping
Sleeping
File size: 1,570 Bytes
e0edce4 f0cab08 e0edce4 f0cab08 e0edce4 f0cab08 368b90a f0cab08 e0edce4 f0cab08 e0edce4 f0cab08 e0edce4 f0cab08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import streamlit as st
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
from datasets import load_dataset
import torch
# Load the dataset
dataset = load_dataset("pubmed_qa", split="test")
# Initialize RAG components
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="default", use_dummy_dataset=True)
model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq")
# Function to get the answer to a medical query
def get_medical_answer(query):
# Encode the query to retrieve relevant documents
inputs = tokenizer(query, return_tensors="pt")
input_ids = inputs["input_ids"]
# Retrieve relevant documents
docs = retriever(input_ids=input_ids, return_tensors="pt")
# Generate the answer from the model
generated_ids = model.generate(input_ids=input_ids, context_input_ids=docs["context_input_ids"],
context_attention_mask=docs["context_attention_mask"])
# Decode the generated answer
generated_answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
return generated_answer
# Streamlit UI
st.title("Medical QA Assistant")
st.write("Ask any medical question, and I will answer it based on PubMed papers!")
# Input text box for queries
query = st.text_input("Enter your medical question:")
if query:
with st.spinner("Searching for the answer..."):
answer = get_medical_answer(query)
st.write(f"Answer: {answer}")
|