File size: 2,064 Bytes
3a5abb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
from langchain.chains import RetrievalQA
from langchain.llms import HuggingFacePipeline
from transformers import pipeline
from modules import parser, vectorizer
def run_analysis(uploaded_files, text_input, query, quick_action, temperature, start_time, end_time):
"""
Main logic that runs when the user clicks 'Analyze Logs'.
It combines file and text inputs, applies embeddings,
and performs question answering using a language model.
"""
logs_text = ""
# Combine all uploaded files into one text string
if uploaded_files:
logs_text += parser.parse_uploaded_files(uploaded_files)
# Add manual pasted text logs
if text_input:
logs_text += "\n" + text_input
# Show error if no log input provided
if not logs_text.strip():
return "❌ No logs provided.", None, None, None
# Use either free-form query or a quick action
query_text = query if query else quick_action
if not query_text:
return "❌ No query provided.", None, None, None
# Chunk logs and embed them
docs = vectorizer.prepare_documents(logs_text)
vectordb = vectorizer.create_vectorstore(docs)
# Load a small Hugging Face text generation pipeline (GPT-2 here)
pipe = pipeline("text-generation", model="gpt2", max_length=512, temperature=temperature)
llm = HuggingFacePipeline(pipeline=pipe)
# Create LangChain retrieval-based QA chain
qa = RetrievalQA.from_chain_type(llm=llm, retriever=vectordb.as_retriever())
# Run the query against embedded document chunks
result = qa.run(query_text)
# -------- Mocked example chart and alert outputs --------
bar_data = {"Hour": ["14:00", "15:00"], "Count": [8, 4]}
pie_data = {"Event Type": ["Blocked", "Scan"], "Count": [8, 4]}
alerts = [("CRITICAL", "8 blocked SSH attempts from 192.168.1.5"),
("WARNING", "4 port scanning alerts from 10.0.0.8")]
# Return structured outputs to Gradio UI
return result, bar_data, pie_data, alerts
|