File size: 2,409 Bytes
9cffedd
d53cdbf
9cffedd
 
d53cdbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cffedd
 
d53cdbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from langchain.chains import RetrievalQA
from langchain_community.llms import HuggingFacePipeline
from transformers import pipeline
from modules import parser, vectorizer
from datetime import datetime
import re

def filter_logs_by_time(logs_text, start_time, end_time):
    """
    Filters log lines based on timestamp range.
    """
    if not start_time or not end_time:
        return logs_text  # Skip filtering if not both are set

    start = datetime.fromisoformat(str(start_time))
    end = datetime.fromisoformat(str(end_time))

    filtered_lines = []
    for line in logs_text.splitlines():
        match = re.match(r"(\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2})", line)
        if match:
            timestamp = datetime.strptime(match.group(1), "%Y-%m-%d %H:%M:%S")
            if start <= timestamp <= end:
                filtered_lines.append(line)
    return "\n".join(filtered_lines)

def run_analysis(uploaded_files, text_input, query, quick_action, temperature, start_time, end_time):
    logs_text = ""

    # Combine uploaded + pasted logs
    if uploaded_files:
        logs_text += parser.parse_uploaded_files(uploaded_files)
    if text_input:
        logs_text += "\n" + text_input

    if not logs_text.strip():
        return "❌ No logs provided.", None, None, None

    # Filter logs based on time range (if provided)
    logs_text = filter_logs_by_time(logs_text, start_time, end_time)

    # Use either typed query or quick action
    query_text = query.strip() if query else ""
    if not query_text and quick_action:
        query_text = quick_action
    if not query_text:
        return "❌ No query or quick action selected.", None, None, None

    # Process logs
    docs = vectorizer.prepare_documents(logs_text)
    vectordb = vectorizer.create_vectorstore(docs)

    pipe = pipeline("text-generation", model="gpt2", max_length=512, temperature=temperature)
    llm = HuggingFacePipeline(pipeline=pipe)

    qa = RetrievalQA.from_chain_type(llm=llm, retriever=vectordb.as_retriever())
    result = qa.run(query_text)

    # Dummy charts and alerts for testing
    bar_data = {"Hour": ["14:00", "15:00"], "Count": [8, 4]}
    pie_data = {"Event Type": ["Blocked", "Scan"], "Count": [8, 4]}
    alerts = [("CRITICAL", "8 blocked SSH attempts from 192.168.1.5"),
              ("WARNING", "4 port scanning alerts from 10.0.0.8")]

    return result, bar_data, pie_data, alerts