rahimizadeh's picture
Update modules/analysis.py
d53cdbf verified
from langchain.chains import RetrievalQA
from langchain_community.llms import HuggingFacePipeline
from transformers import pipeline
from modules import parser, vectorizer
from datetime import datetime
import re
def filter_logs_by_time(logs_text, start_time, end_time):
"""
Filters log lines based on timestamp range.
"""
if not start_time or not end_time:
return logs_text # Skip filtering if not both are set
start = datetime.fromisoformat(str(start_time))
end = datetime.fromisoformat(str(end_time))
filtered_lines = []
for line in logs_text.splitlines():
match = re.match(r"(\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2})", line)
if match:
timestamp = datetime.strptime(match.group(1), "%Y-%m-%d %H:%M:%S")
if start <= timestamp <= end:
filtered_lines.append(line)
return "\n".join(filtered_lines)
def run_analysis(uploaded_files, text_input, query, quick_action, temperature, start_time, end_time):
logs_text = ""
# Combine uploaded + pasted logs
if uploaded_files:
logs_text += parser.parse_uploaded_files(uploaded_files)
if text_input:
logs_text += "\n" + text_input
if not logs_text.strip():
return "❌ No logs provided.", None, None, None
# Filter logs based on time range (if provided)
logs_text = filter_logs_by_time(logs_text, start_time, end_time)
# Use either typed query or quick action
query_text = query.strip() if query else ""
if not query_text and quick_action:
query_text = quick_action
if not query_text:
return "❌ No query or quick action selected.", None, None, None
# Process logs
docs = vectorizer.prepare_documents(logs_text)
vectordb = vectorizer.create_vectorstore(docs)
pipe = pipeline("text-generation", model="gpt2", max_length=512, temperature=temperature)
llm = HuggingFacePipeline(pipeline=pipe)
qa = RetrievalQA.from_chain_type(llm=llm, retriever=vectordb.as_retriever())
result = qa.run(query_text)
# Dummy charts and alerts for testing
bar_data = {"Hour": ["14:00", "15:00"], "Count": [8, 4]}
pie_data = {"Event Type": ["Blocked", "Scan"], "Count": [8, 4]}
alerts = [("CRITICAL", "8 blocked SSH attempts from 192.168.1.5"),
("WARNING", "4 port scanning alerts from 10.0.0.8")]
return result, bar_data, pie_data, alerts