from langchain.text_splitter import CharacterTextSplitter | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain.schema import Document | |
def prepare_documents(text: str, chunk_size=1000, chunk_overlap=200): | |
""" | |
Splits long log text into smaller chunks for embedding. | |
""" | |
docs = [Document(page_content=text)] | |
splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) | |
return splitter.split_documents(docs) | |
def create_vectorstore(documents, model_name="sentence-transformers/all-MiniLM-L6-v2"): | |
""" | |
Embeds chunks and stores them in a FAISS vector DB for retrieval. | |
""" | |
embeddings = HuggingFaceEmbeddings(model_name=model_name) | |
return FAISS.from_documents(documents, embeddings) | |