File size: 6,957 Bytes
357c94c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import skvideo
# assert skvideo.__version__ >= "1.1.11"
import os

import skvideo.io
import cv2

# install the following packages: #
# conda install -c conda-forge scikit-video ffmpeg  #
import os
import torch
import torchvision
from PIL import Image
import numpy as np
from einops import rearrange



class VideoUtils(object):
    def __init__(self, video_path=None, output_video_path=None, bit_rate='origin', fps=25):
        if video_path is not None:
            meta_data = skvideo.io.ffprobe(video_path)
            # avg_frame_rate = meta_data['video']['@r_frame_rate']
            # a, b = avg_frame_rate.split('/')
            # fps = float(a) / float(b)
            # fps = 25
            codec_name = 'libx264'
            # codec_name = meta_data['video'].get('@codec_name')
            # if codec_name=='hevc':
            #     codec_name='h264'
            # profile = meta_data['video'].get('@profile')
            color_space = meta_data['video'].get('@color_space')
            color_transfer = meta_data['video'].get('@color_transfer')
            color_primaries = meta_data['video'].get('@color_primaries')
            color_range = meta_data['video'].get('@color_range')
            pix_fmt = meta_data['video'].get('@pix_fmt')
            if bit_rate=='origin':
                bit_rate = meta_data['video'].get('@bit_rate')
            else:
                bit_rate=None
            if pix_fmt is None:
                pix_fmt = 'yuv420p'

            reader_output_dict = {'-r': str(fps)}
            writer_input_dict = {'-r': str(fps)}
            writer_output_dict = {'-pix_fmt': pix_fmt, '-r': str(fps), '-vcodec':str(codec_name)}
            # if bit_rate is not None:
            #     writer_output_dict['-b:v'] = bit_rate
            writer_output_dict['-crf'] = '17'

            # if video has alpha channel, convert to bgra, uint16 to process
            if pix_fmt.startswith('yuva'):
                writer_input_dict['-pix_fmt'] = 'bgra64le'
                reader_output_dict['-pix_fmt'] = 'bgra64le'
            elif pix_fmt.endswith('le'):
                writer_input_dict['-pix_fmt'] = 'bgr48le'
                reader_output_dict['-pix_fmt'] = 'bgr48le'
            else:
                writer_input_dict['-pix_fmt'] = 'bgr24'
                reader_output_dict['-pix_fmt'] = 'bgr24'

            if color_range is not None:
                writer_output_dict['-color_range'] = color_range
                writer_input_dict['-color_range'] = color_range
            if color_space is not None:
                writer_output_dict['-colorspace'] = color_space
                writer_input_dict['-colorspace'] = color_space
            if color_primaries is not None:
                writer_output_dict['-color_primaries'] = color_primaries
                writer_input_dict['-color_primaries'] = color_primaries
            if color_transfer is not None:
                writer_output_dict['-color_trc'] = color_transfer
                writer_input_dict['-color_trc'] = color_transfer

            writer_output_dict['-sws_flags'] = 'full_chroma_int+bitexact+accurate_rnd'
            reader_output_dict['-sws_flags'] = 'full_chroma_int+bitexact+accurate_rnd'
            # writer_input_dict['-pix_fmt'] = 'bgr48le'
            # reader_output_dict = {'-pix_fmt': 'bgr48le'}

            # -s 1920x1080
            # writer_input_dict['-s'] = '1920x1080'
            # writer_output_dict['-s'] = '1920x1080'
            # writer_input_dict['-s'] = '1080x1920'
            # writer_output_dict['-s'] = '1080x1920'

            print(writer_input_dict)
            print(writer_output_dict)

            self.reader = skvideo.io.FFmpegReader(video_path, outputdict=reader_output_dict)
        else:
            
            # fps = 25
            codec_name = 'libx264'
            bit_rate=None
            pix_fmt = 'yuv420p'

            reader_output_dict = {'-r': str(fps)}
            writer_input_dict = {'-r': str(fps)}
            writer_output_dict = {'-pix_fmt': pix_fmt, '-r': str(fps), '-vcodec':str(codec_name)}
            # if bit_rate is not None:
            #     writer_output_dict['-b:v'] = bit_rate
            writer_output_dict['-crf'] = '17'

            # if video has alpha channel, convert to bgra, uint16 to process
            if pix_fmt.startswith('yuva'):
                writer_input_dict['-pix_fmt'] = 'bgra64le'
                reader_output_dict['-pix_fmt'] = 'bgra64le'
            elif pix_fmt.endswith('le'):
                writer_input_dict['-pix_fmt'] = 'bgr48le'
                reader_output_dict['-pix_fmt'] = 'bgr48le'
            else:
                writer_input_dict['-pix_fmt'] = 'bgr24'
                reader_output_dict['-pix_fmt'] = 'bgr24'

            writer_output_dict['-sws_flags'] = 'full_chroma_int+bitexact+accurate_rnd'
            print(writer_input_dict)
            print(writer_output_dict)

        if output_video_path is not None:
            self.writer = skvideo.io.FFmpegWriter(output_video_path, inputdict=writer_input_dict, outputdict=writer_output_dict, verbosity=1)

    def getframes(self):
        return self.reader.nextFrame()

    def writeframe(self, frame):
        if frame is None:
            self.writer.close()
        else:
            self.writer.writeFrame(frame)


def save_videos_from_pil(pil_images, path, fps=8):
    save_fmt = ".mp4"
    os.makedirs(os.path.dirname(path), exist_ok=True)
    width, height = pil_images[0].size

    if save_fmt == ".mp4":
        video_cap = VideoUtils(output_video_path=path, fps=fps)
        for pil_image in pil_images:
            image_cv2 = np.array(pil_image)[:,:,[2,1,0]]
            video_cap.writeframe(image_cv2)
        video_cap.writeframe(None)

    elif save_fmt == ".gif":
        pil_images[0].save(
            fp=path,
            format="GIF",
            append_images=pil_images[1:],
            save_all=True,
            duration=(1 / fps * 1000),
            loop=0,
            optimize=False,
            lossless=True
        )
    else:
        raise ValueError("Unsupported file type. Use .mp4 or .gif.")


def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
    videos = rearrange(videos, "b c t h w -> t b c h w")
    height, width = videos.shape[-2:]
    outputs = []

    for x in videos:
        x = torchvision.utils.make_grid(x, nrow=n_rows)  # (c h w)
        x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)  # (h w c)
        if rescale:
            x = (x + 1.0) / 2.0  # -1,1 -> 0,1
        x = (x * 255).numpy().astype(np.uint8)
        x = Image.fromarray(x)

        outputs.append(x)

    os.makedirs(os.path.dirname(path), exist_ok=True)

    save_videos_from_pil(outputs, path, fps)
    
def save_video(video, path: str, rescale=False, n_rows=6, fps=8):
    outputs = []
    for x in video:
        x = Image.fromarray(x)
        outputs.append(x)
    
    save_videos_from_pil(outputs, path, fps)