Spaces:
Paused
Paused
Upload 99 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +15 -0
- assets/audio/2.WAV +3 -0
- assets/audio/3.WAV +3 -0
- assets/audio/4.WAV +3 -0
- assets/image/1.png +3 -0
- assets/image/2.png +3 -0
- assets/image/3.png +3 -0
- assets/image/4.png +3 -0
- assets/image/src1.png +3 -0
- assets/image/src2.png +3 -0
- assets/image/src3.png +3 -0
- assets/image/src4.png +3 -0
- assets/material/demo.png +3 -0
- assets/material/logo.png +3 -0
- assets/material/method.png +3 -0
- assets/material/teaser.png +3 -0
- assets/test.csv +25 -0
- hymm_gradio/flask_audio.py +268 -0
- hymm_gradio/gradio_audio.py +122 -0
- hymm_gradio/tool_for_end2end.py +325 -0
- hymm_sp/__init__.py +0 -0
- hymm_sp/__pycache__/__init__.cpython-310.pyc +0 -0
- hymm_sp/__pycache__/config.cpython-310.pyc +0 -0
- hymm_sp/__pycache__/constants.cpython-310.pyc +0 -0
- hymm_sp/__pycache__/helpers.cpython-310.pyc +0 -0
- hymm_sp/__pycache__/inference.cpython-310.pyc +0 -0
- hymm_sp/__pycache__/sample_inference_audio.cpython-310.pyc +0 -0
- hymm_sp/config.py +142 -0
- hymm_sp/constants.py +59 -0
- hymm_sp/data_kits/__pycache__/audio_dataset.cpython-310.pyc +0 -0
- hymm_sp/data_kits/__pycache__/audio_preprocessor.cpython-310.pyc +0 -0
- hymm_sp/data_kits/__pycache__/data_tools.cpython-310.pyc +0 -0
- hymm_sp/data_kits/__pycache__/ffmpeg_utils.cpython-310.pyc +0 -0
- hymm_sp/data_kits/audio_dataset.py +170 -0
- hymm_sp/data_kits/audio_preprocessor.py +72 -0
- hymm_sp/data_kits/data_tools.py +41 -0
- hymm_sp/data_kits/face_align/__init__.py +1 -0
- hymm_sp/data_kits/face_align/__pycache__/__init__.cpython-310.pyc +0 -0
- hymm_sp/data_kits/face_align/__pycache__/align.cpython-310.pyc +0 -0
- hymm_sp/data_kits/face_align/__pycache__/detface.cpython-310.pyc +0 -0
- hymm_sp/data_kits/face_align/align.py +34 -0
- hymm_sp/data_kits/face_align/detface.py +283 -0
- hymm_sp/data_kits/ffmpeg_utils.py +184 -0
- hymm_sp/diffusion/__init__.py +30 -0
- hymm_sp/diffusion/__pycache__/__init__.cpython-310.pyc +0 -0
- hymm_sp/diffusion/pipelines/__init__.py +1 -0
- hymm_sp/diffusion/pipelines/__pycache__/__init__.cpython-310.pyc +0 -0
- hymm_sp/diffusion/pipelines/__pycache__/pipeline_hunyuan_video_audio.cpython-310.pyc +0 -0
- hymm_sp/diffusion/pipelines/pipeline_hunyuan_video_audio.py +1363 -0
- hymm_sp/diffusion/schedulers/__init__.py +1 -0
.gitattributes
CHANGED
@@ -33,3 +33,18 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
assets/audio/2.WAV filter=lfs diff=lfs merge=lfs -text
|
37 |
+
assets/audio/3.WAV filter=lfs diff=lfs merge=lfs -text
|
38 |
+
assets/audio/4.WAV filter=lfs diff=lfs merge=lfs -text
|
39 |
+
assets/image/1.png filter=lfs diff=lfs merge=lfs -text
|
40 |
+
assets/image/2.png filter=lfs diff=lfs merge=lfs -text
|
41 |
+
assets/image/3.png filter=lfs diff=lfs merge=lfs -text
|
42 |
+
assets/image/4.png filter=lfs diff=lfs merge=lfs -text
|
43 |
+
assets/image/src1.png filter=lfs diff=lfs merge=lfs -text
|
44 |
+
assets/image/src2.png filter=lfs diff=lfs merge=lfs -text
|
45 |
+
assets/image/src3.png filter=lfs diff=lfs merge=lfs -text
|
46 |
+
assets/image/src4.png filter=lfs diff=lfs merge=lfs -text
|
47 |
+
assets/material/demo.png filter=lfs diff=lfs merge=lfs -text
|
48 |
+
assets/material/logo.png filter=lfs diff=lfs merge=lfs -text
|
49 |
+
assets/material/method.png filter=lfs diff=lfs merge=lfs -text
|
50 |
+
assets/material/teaser.png filter=lfs diff=lfs merge=lfs -text
|
assets/audio/2.WAV
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:388d768354bb20f3aaa8327ef3391737c8150d3351fdaa04aa98b57caddc5dfb
|
3 |
+
size 3862572
|
assets/audio/3.WAV
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:854f2df163f4fc7bd69f09e8ca31758dedf8a56b191083d5fd4a5b25259b5fe2
|
3 |
+
size 1921068
|
assets/audio/4.WAV
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81d992d96a96829f27aef2d99fa63614b692cc9ed2cbac61e23e9a1dcc402b3a
|
3 |
+
size 3809324
|
assets/image/1.png
ADDED
![]() |
Git LFS Details
|
assets/image/2.png
ADDED
![]() |
Git LFS Details
|
assets/image/3.png
ADDED
![]() |
Git LFS Details
|
assets/image/4.png
ADDED
![]() |
Git LFS Details
|
assets/image/src1.png
ADDED
![]() |
Git LFS Details
|
assets/image/src2.png
ADDED
![]() |
Git LFS Details
|
assets/image/src3.png
ADDED
![]() |
Git LFS Details
|
assets/image/src4.png
ADDED
![]() |
Git LFS Details
|
assets/material/demo.png
ADDED
![]() |
Git LFS Details
|
assets/material/logo.png
ADDED
![]() |
Git LFS Details
|
assets/material/method.png
ADDED
![]() |
Git LFS Details
|
assets/material/teaser.png
ADDED
![]() |
Git LFS Details
|
assets/test.csv
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
videoid,image,audio,prompt,fps
|
2 |
+
8,assets/image/1.png,assets/audio/2.WAV,A person sits cross-legged by a campfire in a forested area.,25
|
3 |
+
9,assets/image/2.png,assets/audio/2.WAV,"A person with long blonde hair wearing a green jacket, standing in a forested area during twilight.",25
|
4 |
+
10,assets/image/3.png,assets/audio/2.WAV,A person playing guitar by a campfire in a forest.,25
|
5 |
+
11,assets/image/4.png,assets/audio/2.WAV,"A person wearing a green jacket stands in a forested area, with sunlight filtering through the trees.",25
|
6 |
+
12,assets/image/src1.png,assets/audio/2.WAV,A person sits cross-legged by a campfire in a forest at dusk.,25
|
7 |
+
13,assets/image/src2.png,assets/audio/2.WAV,A person in a green jacket stands in a forest at dusk.,25
|
8 |
+
14,assets/image/src3.png,assets/audio/2.WAV,A person playing guitar by a campfire in a forest.,25
|
9 |
+
15,assets/image/src4.png,assets/audio/2.WAV,"A person in a green jacket stands in a forest, backlit by sunlight.",25
|
10 |
+
16,assets/image/1.png,assets/audio/3.WAV,A person sits cross-legged by a campfire in a forested area.,25
|
11 |
+
17,assets/image/2.png,assets/audio/3.WAV,"A person with long blonde hair wearing a green jacket, standing in a forested area during twilight.",25
|
12 |
+
18,assets/image/3.png,assets/audio/3.WAV,A person playing guitar by a campfire in a forest.,25
|
13 |
+
19,assets/image/4.png,assets/audio/3.WAV,"A person wearing a green jacket stands in a forested area, with sunlight filtering through the trees.",25
|
14 |
+
20,assets/image/src1.png,assets/audio/3.WAV,A person sits cross-legged by a campfire in a forest at dusk.,25
|
15 |
+
21,assets/image/src2.png,assets/audio/3.WAV,A person in a green jacket stands in a forest at dusk.,25
|
16 |
+
22,assets/image/src3.png,assets/audio/3.WAV,A person playing guitar by a campfire in a forest.,25
|
17 |
+
23,assets/image/src4.png,assets/audio/3.WAV,"A person in a green jacket stands in a forest, backlit by sunlight.",25
|
18 |
+
24,assets/image/1.png,assets/audio/4.WAV,A person sits cross-legged by a campfire in a forested area.,25
|
19 |
+
25,assets/image/2.png,assets/audio/4.WAV,"A person with long blonde hair wearing a green jacket, standing in a forested area during twilight.",25
|
20 |
+
26,assets/image/3.png,assets/audio/4.WAV,A person playing guitar by a campfire in a forest.,25
|
21 |
+
27,assets/image/4.png,assets/audio/4.WAV,"A person wearing a green jacket stands in a forested area, with sunlight filtering through the trees.",25
|
22 |
+
28,assets/image/src1.png,assets/audio/4.WAV,A person sits cross-legged by a campfire in a forest at dusk.,25
|
23 |
+
29,assets/image/src2.png,assets/audio/4.WAV,A person in a green jacket stands in a forest at dusk.,25
|
24 |
+
30,assets/image/src3.png,assets/audio/4.WAV,A person playing guitar by a campfire in a forest.,25
|
25 |
+
31,assets/image/src4.png,assets/audio/4.WAV,"A person in a green jacket stands in a forest, backlit by sunlight.",25
|
hymm_gradio/flask_audio.py
ADDED
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import warnings
|
5 |
+
import threading
|
6 |
+
import traceback
|
7 |
+
import uvicorn
|
8 |
+
from fastapi import FastAPI, Body
|
9 |
+
from pathlib import Path
|
10 |
+
from datetime import datetime
|
11 |
+
import torch.distributed as dist
|
12 |
+
from hymm_gradio.tool_for_end2end import *
|
13 |
+
from hymm_sp.config import parse_args
|
14 |
+
from hymm_sp.sample_inference_audio import HunyuanVideoSampler
|
15 |
+
|
16 |
+
from hymm_sp.modules.parallel_states import (
|
17 |
+
initialize_distributed,
|
18 |
+
nccl_info,
|
19 |
+
)
|
20 |
+
|
21 |
+
from transformers import WhisperModel
|
22 |
+
from transformers import AutoFeatureExtractor
|
23 |
+
from hymm_sp.data_kits.face_align import AlignImage
|
24 |
+
|
25 |
+
|
26 |
+
warnings.filterwarnings("ignore")
|
27 |
+
MODEL_OUTPUT_PATH = os.environ.get('MODEL_BASE')
|
28 |
+
app = FastAPI()
|
29 |
+
rlock = threading.RLock()
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
@app.api_route('/predict2', methods=['GET', 'POST'])
|
34 |
+
def predict(data=Body(...)):
|
35 |
+
is_acquire = False
|
36 |
+
error_info = ""
|
37 |
+
try:
|
38 |
+
is_acquire = rlock.acquire(blocking=False)
|
39 |
+
if is_acquire:
|
40 |
+
res = predict_wrap(data)
|
41 |
+
return res
|
42 |
+
except Exception as e:
|
43 |
+
error_info = traceback.format_exc()
|
44 |
+
print(error_info)
|
45 |
+
finally:
|
46 |
+
if is_acquire:
|
47 |
+
rlock.release()
|
48 |
+
return {"errCode": -1, "info": "broken"}
|
49 |
+
|
50 |
+
def predict_wrap(input_dict={}):
|
51 |
+
if nccl_info.sp_size > 1:
|
52 |
+
device = torch.device(f"cuda:{torch.distributed.get_rank()}")
|
53 |
+
rank = local_rank = torch.distributed.get_rank()
|
54 |
+
print(f"sp_size={nccl_info.sp_size}, rank {rank} local_rank {local_rank}")
|
55 |
+
try:
|
56 |
+
print(f"----- rank = {rank}")
|
57 |
+
if rank == 0:
|
58 |
+
input_dict = process_input_dict(input_dict)
|
59 |
+
|
60 |
+
print('------- start to predict -------')
|
61 |
+
# Parse input arguments
|
62 |
+
image_path = input_dict["image_path"]
|
63 |
+
driving_audio_path = input_dict["audio_path"]
|
64 |
+
|
65 |
+
prompt = input_dict["prompt"]
|
66 |
+
|
67 |
+
save_fps = input_dict.get("save_fps", 25)
|
68 |
+
|
69 |
+
|
70 |
+
ret_dict = None
|
71 |
+
if image_path is None or driving_audio_path is None:
|
72 |
+
ret_dict = {
|
73 |
+
"errCode": -3,
|
74 |
+
"content": [
|
75 |
+
{
|
76 |
+
"buffer": None
|
77 |
+
},
|
78 |
+
],
|
79 |
+
"info": "input content is not valid",
|
80 |
+
}
|
81 |
+
|
82 |
+
print(f"errCode: -3, input content is not valid!")
|
83 |
+
return ret_dict
|
84 |
+
|
85 |
+
# Preprocess input batch
|
86 |
+
torch.cuda.synchronize()
|
87 |
+
|
88 |
+
a = datetime.now()
|
89 |
+
|
90 |
+
try:
|
91 |
+
model_kwargs_tmp = data_preprocess_server(
|
92 |
+
args, image_path, driving_audio_path, prompt, feature_extractor
|
93 |
+
)
|
94 |
+
except:
|
95 |
+
ret_dict = {
|
96 |
+
"errCode": -2,
|
97 |
+
"content": [
|
98 |
+
{
|
99 |
+
"buffer": None
|
100 |
+
},
|
101 |
+
],
|
102 |
+
"info": "failed to preprocess input data"
|
103 |
+
}
|
104 |
+
print(f"errCode: -2, preprocess failed!")
|
105 |
+
return ret_dict
|
106 |
+
|
107 |
+
text_prompt = model_kwargs_tmp["text_prompt"]
|
108 |
+
audio_path = model_kwargs_tmp["audio_path"]
|
109 |
+
image_path = model_kwargs_tmp["image_path"]
|
110 |
+
fps = model_kwargs_tmp["fps"]
|
111 |
+
audio_prompts = model_kwargs_tmp["audio_prompts"]
|
112 |
+
audio_len = model_kwargs_tmp["audio_len"]
|
113 |
+
motion_bucket_id_exps = model_kwargs_tmp["motion_bucket_id_exps"]
|
114 |
+
motion_bucket_id_heads = model_kwargs_tmp["motion_bucket_id_heads"]
|
115 |
+
pixel_value_ref = model_kwargs_tmp["pixel_value_ref"]
|
116 |
+
pixel_value_ref_llava = model_kwargs_tmp["pixel_value_ref_llava"]
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
torch.cuda.synchronize()
|
121 |
+
b = datetime.now()
|
122 |
+
preprocess_time = (b - a).total_seconds()
|
123 |
+
print("="*100)
|
124 |
+
print("preprocess time :", preprocess_time)
|
125 |
+
print("="*100)
|
126 |
+
|
127 |
+
else:
|
128 |
+
text_prompt = None
|
129 |
+
audio_path = None
|
130 |
+
image_path = None
|
131 |
+
fps = None
|
132 |
+
audio_prompts = None
|
133 |
+
audio_len = None
|
134 |
+
motion_bucket_id_exps = None
|
135 |
+
motion_bucket_id_heads = None
|
136 |
+
pixel_value_ref = None
|
137 |
+
pixel_value_ref_llava = None
|
138 |
+
|
139 |
+
except:
|
140 |
+
traceback.print_exc()
|
141 |
+
if rank == 0:
|
142 |
+
ret_dict = {
|
143 |
+
"errCode": -1, # Failed to generate video
|
144 |
+
"content":[
|
145 |
+
{
|
146 |
+
"buffer": None
|
147 |
+
}
|
148 |
+
],
|
149 |
+
"info": "failed to preprocess",
|
150 |
+
}
|
151 |
+
return ret_dict
|
152 |
+
|
153 |
+
try:
|
154 |
+
broadcast_params = [
|
155 |
+
text_prompt,
|
156 |
+
audio_path,
|
157 |
+
image_path,
|
158 |
+
fps,
|
159 |
+
audio_prompts,
|
160 |
+
audio_len,
|
161 |
+
motion_bucket_id_exps,
|
162 |
+
motion_bucket_id_heads,
|
163 |
+
pixel_value_ref,
|
164 |
+
pixel_value_ref_llava,
|
165 |
+
]
|
166 |
+
dist.broadcast_object_list(broadcast_params, src=0)
|
167 |
+
outputs = generate_image_parallel(*broadcast_params)
|
168 |
+
|
169 |
+
if rank == 0:
|
170 |
+
samples = outputs["samples"]
|
171 |
+
sample = samples[0].unsqueeze(0)
|
172 |
+
|
173 |
+
sample = sample[:, :, :audio_len[0]]
|
174 |
+
|
175 |
+
video = sample[0].permute(1, 2, 3, 0).clamp(0, 1).numpy()
|
176 |
+
video = (video * 255.).astype(np.uint8)
|
177 |
+
|
178 |
+
output_dict = {
|
179 |
+
"err_code": 0,
|
180 |
+
"err_msg": "succeed",
|
181 |
+
"video": video,
|
182 |
+
"audio": input_dict.get("audio_path", None),
|
183 |
+
"save_fps": save_fps,
|
184 |
+
}
|
185 |
+
|
186 |
+
ret_dict = process_output_dict(output_dict)
|
187 |
+
return ret_dict
|
188 |
+
|
189 |
+
except:
|
190 |
+
traceback.print_exc()
|
191 |
+
if rank == 0:
|
192 |
+
ret_dict = {
|
193 |
+
"errCode": -1, # Failed to generate video
|
194 |
+
"content":[
|
195 |
+
{
|
196 |
+
"buffer": None
|
197 |
+
}
|
198 |
+
],
|
199 |
+
"info": "failed to generate video",
|
200 |
+
}
|
201 |
+
return ret_dict
|
202 |
+
|
203 |
+
return None
|
204 |
+
|
205 |
+
def generate_image_parallel(text_prompt,
|
206 |
+
audio_path,
|
207 |
+
image_path,
|
208 |
+
fps,
|
209 |
+
audio_prompts,
|
210 |
+
audio_len,
|
211 |
+
motion_bucket_id_exps,
|
212 |
+
motion_bucket_id_heads,
|
213 |
+
pixel_value_ref,
|
214 |
+
pixel_value_ref_llava
|
215 |
+
):
|
216 |
+
if nccl_info.sp_size > 1:
|
217 |
+
device = torch.device(f"cuda:{torch.distributed.get_rank()}")
|
218 |
+
|
219 |
+
batch = {
|
220 |
+
"text_prompt": text_prompt,
|
221 |
+
"audio_path": audio_path,
|
222 |
+
"image_path": image_path,
|
223 |
+
"fps": fps,
|
224 |
+
"audio_prompts": audio_prompts,
|
225 |
+
"audio_len": audio_len,
|
226 |
+
"motion_bucket_id_exps": motion_bucket_id_exps,
|
227 |
+
"motion_bucket_id_heads": motion_bucket_id_heads,
|
228 |
+
"pixel_value_ref": pixel_value_ref,
|
229 |
+
"pixel_value_ref_llava": pixel_value_ref_llava
|
230 |
+
}
|
231 |
+
|
232 |
+
samples = hunyuan_sampler.predict(args, batch, wav2vec, feature_extractor, align_instance)
|
233 |
+
return samples
|
234 |
+
|
235 |
+
def worker_loop():
|
236 |
+
while True:
|
237 |
+
predict_wrap()
|
238 |
+
|
239 |
+
|
240 |
+
if __name__ == "__main__":
|
241 |
+
audio_args = parse_args()
|
242 |
+
initialize_distributed(audio_args.seed)
|
243 |
+
hunyuan_sampler = HunyuanVideoSampler.from_pretrained(
|
244 |
+
audio_args.ckpt, args=audio_args)
|
245 |
+
args = hunyuan_sampler.args
|
246 |
+
|
247 |
+
rank = local_rank = 0
|
248 |
+
device = torch.device("cuda")
|
249 |
+
if nccl_info.sp_size > 1:
|
250 |
+
device = torch.device(f"cuda:{torch.distributed.get_rank()}")
|
251 |
+
rank = local_rank = torch.distributed.get_rank()
|
252 |
+
|
253 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(f"{MODEL_OUTPUT_PATH}/ckpts/whisper-tiny/")
|
254 |
+
wav2vec = WhisperModel.from_pretrained(f"{MODEL_OUTPUT_PATH}/ckpts/whisper-tiny/").to(device=device, dtype=torch.float32)
|
255 |
+
wav2vec.requires_grad_(False)
|
256 |
+
|
257 |
+
|
258 |
+
BASE_DIR = f'{MODEL_OUTPUT_PATH}/ckpts/det_align/'
|
259 |
+
det_path = os.path.join(BASE_DIR, 'detface.pt')
|
260 |
+
align_instance = AlignImage("cuda", det_path=det_path)
|
261 |
+
|
262 |
+
|
263 |
+
|
264 |
+
if rank == 0:
|
265 |
+
uvicorn.run(app, host="0.0.0.0", port=80)
|
266 |
+
else:
|
267 |
+
worker_loop()
|
268 |
+
|
hymm_gradio/gradio_audio.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import glob
|
4 |
+
import json
|
5 |
+
import datetime
|
6 |
+
import requests
|
7 |
+
import gradio as gr
|
8 |
+
from tool_for_end2end import *
|
9 |
+
|
10 |
+
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
11 |
+
DATADIR = './temp'
|
12 |
+
_HEADER_ = '''
|
13 |
+
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
|
14 |
+
<h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; display: contents;">Tencent HunyuanVideo-Avatar Demo</h1>
|
15 |
+
</div>
|
16 |
+
|
17 |
+
'''
|
18 |
+
# flask url
|
19 |
+
URL = "http://127.0.0.1:80/predict2"
|
20 |
+
|
21 |
+
def post_and_get(audio_input, id_image, prompt):
|
22 |
+
now = datetime.datetime.now().isoformat()
|
23 |
+
imgdir = os.path.join(DATADIR, 'reference')
|
24 |
+
videodir = os.path.join(DATADIR, 'video')
|
25 |
+
imgfile = os.path.join(imgdir, now + '.png')
|
26 |
+
output_video_path = os.path.join(videodir, now + '.mp4')
|
27 |
+
|
28 |
+
|
29 |
+
os.makedirs(imgdir, exist_ok=True)
|
30 |
+
os.makedirs(videodir, exist_ok=True)
|
31 |
+
cv2.imwrite(imgfile, id_image[:,:,::-1])
|
32 |
+
|
33 |
+
proxies = {
|
34 |
+
"http": None,
|
35 |
+
"https": None,
|
36 |
+
}
|
37 |
+
|
38 |
+
files = {
|
39 |
+
"image_buffer": encode_image_to_base64(imgfile),
|
40 |
+
"audio_buffer": encode_wav_to_base64(audio_input),
|
41 |
+
"text": prompt,
|
42 |
+
"save_fps": 25,
|
43 |
+
}
|
44 |
+
r = requests.get(URL, data = json.dumps(files), proxies=proxies)
|
45 |
+
ret_dict = json.loads(r.text)
|
46 |
+
print(ret_dict["info"])
|
47 |
+
save_video_base64_to_local(
|
48 |
+
video_path=None,
|
49 |
+
base64_buffer=ret_dict["content"][0]["buffer"],
|
50 |
+
output_video_path=output_video_path)
|
51 |
+
|
52 |
+
|
53 |
+
return output_video_path
|
54 |
+
|
55 |
+
def create_demo():
|
56 |
+
|
57 |
+
with gr.Blocks() as demo:
|
58 |
+
gr.Markdown(_HEADER_)
|
59 |
+
with gr.Tab('语音数字人驱动'):
|
60 |
+
with gr.Row():
|
61 |
+
with gr.Column(scale=1):
|
62 |
+
with gr.Group():
|
63 |
+
prompt = gr.Textbox(label="Prompt", value="a man is speaking.")
|
64 |
+
|
65 |
+
audio_input = gr.Audio(sources=["upload"],
|
66 |
+
type="filepath",
|
67 |
+
label="Upload Audio",
|
68 |
+
elem_classes="media-upload",
|
69 |
+
scale=1)
|
70 |
+
id_image = gr.Image(label="Input reference image", height=480)
|
71 |
+
|
72 |
+
with gr.Column(scale=2):
|
73 |
+
with gr.Group():
|
74 |
+
output_image = gr.Video(label="Generated Video")
|
75 |
+
|
76 |
+
|
77 |
+
with gr.Column(scale=1):
|
78 |
+
generate_btn = gr.Button("Generate")
|
79 |
+
|
80 |
+
generate_btn.click(fn=post_and_get,
|
81 |
+
inputs=[audio_input, id_image, prompt],
|
82 |
+
outputs=[output_image],
|
83 |
+
)
|
84 |
+
|
85 |
+
# quick_prompts = [[x] for x in glob.glob('./assets/images/*.png')]
|
86 |
+
# example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Other object', samples_per_page=1000, components=[id_image])
|
87 |
+
# example_quick_prompts.click(lambda x: x[0], inputs=example_quick_prompts, outputs=id_image, show_progress=False, queue=False)
|
88 |
+
# with gr.Row(), gr.Column():
|
89 |
+
# gr.Markdown("## Examples")
|
90 |
+
# example_inps = [
|
91 |
+
# [
|
92 |
+
# 'A woman is drinking coffee at a café.',
|
93 |
+
# './assets/images/seg_woman_01.png',
|
94 |
+
# 1280, 720, 30, 129, 7.5, 13, 1024,
|
95 |
+
# "assets/videos/seg_woman_01.mp4"
|
96 |
+
# ],
|
97 |
+
# [
|
98 |
+
# 'In a cubicle of an office building, a woman focuses intently on the computer screen, typing rapidly on the keyboard, surrounded by piles of documents.',
|
99 |
+
# './assets/images/seg_woman_03.png',
|
100 |
+
# 1280, 720, 30, 129, 7.5, 13, 1025,
|
101 |
+
# "./assets/videos/seg_woman_03.mp4"
|
102 |
+
# ],
|
103 |
+
# [
|
104 |
+
# 'A man walks across an ancient stone bridge holding an umbrella, raindrops tapping against it.',
|
105 |
+
# './assets/images/seg_man_01.png',
|
106 |
+
# 1280, 720, 30, 129, 7.5, 13, 1025,
|
107 |
+
# "./assets/videos/seg_man_01.mp4"
|
108 |
+
# ],
|
109 |
+
# [
|
110 |
+
# 'During a train journey, a man admires the changing scenery through the window.',
|
111 |
+
# './assets/images/seg_man_02.png',
|
112 |
+
# 1280, 720, 30, 129, 7.5, 13, 1026,
|
113 |
+
# "./assets/videos/seg_man_02.mp4"
|
114 |
+
# ]
|
115 |
+
# ]
|
116 |
+
# gr.Examples(examples=example_inps, inputs=[prompt, id_image, width, height, num_steps, num_frames, guidance, flow_shift, seed, output_image],)
|
117 |
+
return demo
|
118 |
+
|
119 |
+
if __name__ == "__main__":
|
120 |
+
allowed_paths = ['/']
|
121 |
+
demo = create_demo()
|
122 |
+
demo.launch(server_name='0.0.0.0', server_port=8080, share=True, allowed_paths=allowed_paths)
|
hymm_gradio/tool_for_end2end.py
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import io
|
3 |
+
import math
|
4 |
+
import uuid
|
5 |
+
import base64
|
6 |
+
import imageio
|
7 |
+
import torch
|
8 |
+
import torchvision
|
9 |
+
from PIL import Image
|
10 |
+
import numpy as np
|
11 |
+
from copy import deepcopy
|
12 |
+
from einops import rearrange
|
13 |
+
import torchvision.transforms as transforms
|
14 |
+
from torchvision.transforms import ToPILImage
|
15 |
+
from hymm_sp.data_kits.audio_dataset import get_audio_feature
|
16 |
+
from hymm_sp.data_kits.ffmpeg_utils import save_video
|
17 |
+
|
18 |
+
TEMP_DIR = "./temp"
|
19 |
+
if not os.path.exists(TEMP_DIR):
|
20 |
+
os.makedirs(TEMP_DIR, exist_ok=True)
|
21 |
+
|
22 |
+
|
23 |
+
def data_preprocess_server(args, image_path, audio_path, prompts, feature_extractor):
|
24 |
+
llava_transform = transforms.Compose(
|
25 |
+
[
|
26 |
+
transforms.Resize((336, 336), interpolation=transforms.InterpolationMode.BILINEAR),
|
27 |
+
transforms.ToTensor(),
|
28 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.4082107), (0.26862954, 0.26130258, 0.27577711)),
|
29 |
+
]
|
30 |
+
)
|
31 |
+
|
32 |
+
""" 生成prompt """
|
33 |
+
if prompts is None:
|
34 |
+
prompts = "Authentic, Realistic, Natural, High-quality, Lens-Fixed."
|
35 |
+
else:
|
36 |
+
prompts = "Authentic, Realistic, Natural, High-quality, Lens-Fixed, " + prompts
|
37 |
+
|
38 |
+
fps = 25
|
39 |
+
|
40 |
+
img_size = args.image_size
|
41 |
+
ref_image = Image.open(image_path).convert('RGB')
|
42 |
+
|
43 |
+
# Resize reference image
|
44 |
+
w, h = ref_image.size
|
45 |
+
scale = img_size / min(w, h)
|
46 |
+
new_w = round(w * scale / 64) * 64
|
47 |
+
new_h = round(h * scale / 64) * 64
|
48 |
+
|
49 |
+
if img_size == 704:
|
50 |
+
img_size_long = 1216
|
51 |
+
if new_w * new_h > img_size * img_size_long:
|
52 |
+
scale = math.sqrt(img_size * img_size_long / w / h)
|
53 |
+
new_w = round(w * scale / 64) * 64
|
54 |
+
new_h = round(h * scale / 64) * 64
|
55 |
+
|
56 |
+
ref_image = ref_image.resize((new_w, new_h), Image.LANCZOS)
|
57 |
+
|
58 |
+
ref_image = np.array(ref_image)
|
59 |
+
ref_image = torch.from_numpy(ref_image)
|
60 |
+
|
61 |
+
audio_input, audio_len = get_audio_feature(feature_extractor, audio_path)
|
62 |
+
audio_prompts = audio_input[0]
|
63 |
+
|
64 |
+
motion_bucket_id_heads = np.array([25] * 4)
|
65 |
+
motion_bucket_id_exps = np.array([30] * 4)
|
66 |
+
motion_bucket_id_heads = torch.from_numpy(motion_bucket_id_heads)
|
67 |
+
motion_bucket_id_exps = torch.from_numpy(motion_bucket_id_exps)
|
68 |
+
fps = torch.from_numpy(np.array(fps))
|
69 |
+
|
70 |
+
to_pil = ToPILImage()
|
71 |
+
pixel_value_ref = rearrange(ref_image.clone().unsqueeze(0), "b h w c -> b c h w") # (b c h w)
|
72 |
+
|
73 |
+
pixel_value_ref_llava = [llava_transform(to_pil(image)) for image in pixel_value_ref]
|
74 |
+
pixel_value_ref_llava = torch.stack(pixel_value_ref_llava, dim=0)
|
75 |
+
|
76 |
+
batch = {
|
77 |
+
"text_prompt": [prompts],
|
78 |
+
"audio_path": [audio_path],
|
79 |
+
"image_path": [image_path],
|
80 |
+
"fps": fps.unsqueeze(0).to(dtype=torch.float16),
|
81 |
+
"audio_prompts": audio_prompts.unsqueeze(0).to(dtype=torch.float16),
|
82 |
+
"audio_len": [audio_len],
|
83 |
+
"motion_bucket_id_exps": motion_bucket_id_exps.unsqueeze(0),
|
84 |
+
"motion_bucket_id_heads": motion_bucket_id_heads.unsqueeze(0),
|
85 |
+
"pixel_value_ref": pixel_value_ref.unsqueeze(0).to(dtype=torch.float16),
|
86 |
+
"pixel_value_ref_llava": pixel_value_ref_llava.unsqueeze(0).to(dtype=torch.float16)
|
87 |
+
}
|
88 |
+
|
89 |
+
return batch
|
90 |
+
|
91 |
+
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8, quality=8):
|
92 |
+
videos = rearrange(videos, "b c t h w -> t b c h w")
|
93 |
+
outputs = []
|
94 |
+
for x in videos:
|
95 |
+
x = torchvision.utils.make_grid(x, nrow=n_rows)
|
96 |
+
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
97 |
+
if rescale:
|
98 |
+
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
|
99 |
+
x = torch.clamp(x,0,1)
|
100 |
+
x = (x * 255).numpy().astype(np.uint8)
|
101 |
+
outputs.append(x)
|
102 |
+
|
103 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
104 |
+
imageio.mimsave(path, outputs, fps=fps, quality=quality)
|
105 |
+
|
106 |
+
def encode_image_to_base64(image_path):
|
107 |
+
try:
|
108 |
+
with open(image_path, 'rb') as image_file:
|
109 |
+
image_data = image_file.read()
|
110 |
+
encoded_data = base64.b64encode(image_data).decode('utf-8')
|
111 |
+
print(f"Image file '{image_path}' has been successfully encoded to Base64.")
|
112 |
+
return encoded_data
|
113 |
+
|
114 |
+
except Exception as e:
|
115 |
+
print(f"Error encoding image: {e}")
|
116 |
+
return None
|
117 |
+
|
118 |
+
def encode_video_to_base64(video_path):
|
119 |
+
try:
|
120 |
+
with open(video_path, 'rb') as video_file:
|
121 |
+
video_data = video_file.read()
|
122 |
+
encoded_data = base64.b64encode(video_data).decode('utf-8')
|
123 |
+
print(f"Video file '{video_path}' has been successfully encoded to Base64.")
|
124 |
+
return encoded_data
|
125 |
+
|
126 |
+
except Exception as e:
|
127 |
+
print(f"Error encoding video: {e}")
|
128 |
+
return None
|
129 |
+
|
130 |
+
def encode_wav_to_base64(wav_path):
|
131 |
+
try:
|
132 |
+
with open(wav_path, 'rb') as audio_file:
|
133 |
+
audio_data = audio_file.read()
|
134 |
+
encoded_data = base64.b64encode(audio_data).decode('utf-8')
|
135 |
+
print(f"Audio file '{wav_path}' has been successfully encoded to Base64.")
|
136 |
+
return encoded_data
|
137 |
+
|
138 |
+
except Exception as e:
|
139 |
+
print(f"Error encoding audio: {e}")
|
140 |
+
return None
|
141 |
+
|
142 |
+
def encode_pkl_to_base64(pkl_path):
|
143 |
+
try:
|
144 |
+
with open(pkl_path, 'rb') as pkl_file:
|
145 |
+
pkl_data = pkl_file.read()
|
146 |
+
|
147 |
+
encoded_data = base64.b64encode(pkl_data).decode('utf-8')
|
148 |
+
|
149 |
+
print(f"Pickle file '{pkl_path}' has been successfully encoded to Base64.")
|
150 |
+
return encoded_data
|
151 |
+
|
152 |
+
except Exception as e:
|
153 |
+
print(f"Error encoding pickle: {e}")
|
154 |
+
return None
|
155 |
+
|
156 |
+
def decode_base64_to_image(base64_buffer_str):
|
157 |
+
try:
|
158 |
+
image_data = base64.b64decode(base64_buffer_str)
|
159 |
+
image = Image.open(io.BytesIO(image_data))
|
160 |
+
image_array = np.array(image)
|
161 |
+
print(f"Image Base64 string has beed succesfully decoded to image.")
|
162 |
+
return image_array
|
163 |
+
except Exception as e:
|
164 |
+
print(f"Error encdecodingoding image: {e}")
|
165 |
+
return None
|
166 |
+
|
167 |
+
def decode_base64_to_video(base64_buffer_str):
|
168 |
+
try:
|
169 |
+
video_data = base64.b64decode(base64_buffer_str)
|
170 |
+
video_bytes = io.BytesIO(video_data)
|
171 |
+
video_bytes.seek(0)
|
172 |
+
video_reader = imageio.get_reader(video_bytes, 'ffmpeg')
|
173 |
+
video_frames = [frame for frame in video_reader]
|
174 |
+
return video_frames
|
175 |
+
except Exception as e:
|
176 |
+
print(f"Error decoding video: {e}")
|
177 |
+
return None
|
178 |
+
|
179 |
+
|
180 |
+
def save_video_base64_to_local(video_path=None, base64_buffer=None, output_video_path=None):
|
181 |
+
if video_path is not None and base64_buffer is None:
|
182 |
+
video_buffer_base64 = encode_video_to_base64(video_path)
|
183 |
+
elif video_path is None and base64_buffer is not None:
|
184 |
+
video_buffer_base64 = deepcopy(base64_buffer)
|
185 |
+
else:
|
186 |
+
print("Please pass either 'video_path' or 'base64_buffer'")
|
187 |
+
return None
|
188 |
+
|
189 |
+
if video_buffer_base64 is not None:
|
190 |
+
video_data = base64.b64decode(video_buffer_base64)
|
191 |
+
if output_video_path is None:
|
192 |
+
uuid_string = str(uuid.uuid4())
|
193 |
+
temp_video_path = f'{TEMP_DIR}/{uuid_string}.mp4'
|
194 |
+
else:
|
195 |
+
temp_video_path = output_video_path
|
196 |
+
with open(temp_video_path, 'wb') as video_file:
|
197 |
+
video_file.write(video_data)
|
198 |
+
return temp_video_path
|
199 |
+
else:
|
200 |
+
return None
|
201 |
+
|
202 |
+
def save_audio_base64_to_local(audio_path=None, base64_buffer=None):
|
203 |
+
if audio_path is not None and base64_buffer is None:
|
204 |
+
audio_buffer_base64 = encode_wav_to_base64(audio_path)
|
205 |
+
elif audio_path is None and base64_buffer is not None:
|
206 |
+
audio_buffer_base64 = deepcopy(base64_buffer)
|
207 |
+
else:
|
208 |
+
print("Please pass either 'audio_path' or 'base64_buffer'")
|
209 |
+
return None
|
210 |
+
|
211 |
+
if audio_buffer_base64 is not None:
|
212 |
+
audio_data = base64.b64decode(audio_buffer_base64)
|
213 |
+
uuid_string = str(uuid.uuid4())
|
214 |
+
temp_audio_path = f'{TEMP_DIR}/{uuid_string}.wav'
|
215 |
+
with open(temp_audio_path, 'wb') as audio_file:
|
216 |
+
audio_file.write(audio_data)
|
217 |
+
return temp_audio_path
|
218 |
+
else:
|
219 |
+
return None
|
220 |
+
|
221 |
+
def save_pkl_base64_to_local(pkl_path=None, base64_buffer=None):
|
222 |
+
if pkl_path is not None and base64_buffer is None:
|
223 |
+
pkl_buffer_base64 = encode_pkl_to_base64(pkl_path)
|
224 |
+
elif pkl_path is None and base64_buffer is not None:
|
225 |
+
pkl_buffer_base64 = deepcopy(base64_buffer)
|
226 |
+
else:
|
227 |
+
print("Please pass either 'pkl_path' or 'base64_buffer'")
|
228 |
+
return None
|
229 |
+
|
230 |
+
if pkl_buffer_base64 is not None:
|
231 |
+
pkl_data = base64.b64decode(pkl_buffer_base64)
|
232 |
+
uuid_string = str(uuid.uuid4())
|
233 |
+
temp_pkl_path = f'{TEMP_DIR}/{uuid_string}.pkl'
|
234 |
+
with open(temp_pkl_path, 'wb') as pkl_file:
|
235 |
+
pkl_file.write(pkl_data)
|
236 |
+
return temp_pkl_path
|
237 |
+
else:
|
238 |
+
return None
|
239 |
+
|
240 |
+
def remove_temp_fles(input_dict):
|
241 |
+
for key, val in input_dict.items():
|
242 |
+
if "_path" in key and val is not None and os.path.exists(val):
|
243 |
+
os.remove(val)
|
244 |
+
print(f"Remove temporary {key} from {val}")
|
245 |
+
|
246 |
+
def process_output_dict(output_dict):
|
247 |
+
|
248 |
+
uuid_string = str(uuid.uuid4())
|
249 |
+
temp_video_path = f'{TEMP_DIR}/{uuid_string}.mp4'
|
250 |
+
save_video(output_dict["video"], temp_video_path, fps=output_dict.get("save_fps", 25))
|
251 |
+
|
252 |
+
# Add audio
|
253 |
+
if output_dict["audio"] is not None and os.path.exists(output_dict["audio"]):
|
254 |
+
output_path = temp_video_path
|
255 |
+
audio_path = output_dict["audio"]
|
256 |
+
save_path = temp_video_path.replace(".mp4", "_audio.mp4")
|
257 |
+
print('='*100)
|
258 |
+
print(f"output_path = {output_path}\n audio_path = {audio_path}\n save_path = {save_path}")
|
259 |
+
os.system(f"ffmpeg -i '{output_path}' -i '{audio_path}' -shortest '{save_path}' -y -loglevel quiet; rm '{output_path}'")
|
260 |
+
else:
|
261 |
+
save_path = temp_video_path
|
262 |
+
|
263 |
+
video_base64_buffer = encode_video_to_base64(save_path)
|
264 |
+
|
265 |
+
encoded_output_dict = {
|
266 |
+
"errCode": output_dict["err_code"],
|
267 |
+
"content": [
|
268 |
+
{
|
269 |
+
"buffer": video_base64_buffer
|
270 |
+
},
|
271 |
+
],
|
272 |
+
"info":output_dict["err_msg"],
|
273 |
+
}
|
274 |
+
|
275 |
+
|
276 |
+
|
277 |
+
return encoded_output_dict
|
278 |
+
|
279 |
+
|
280 |
+
def save_image_base64_to_local(image_path=None, base64_buffer=None):
|
281 |
+
# Encode image to base64 buffer
|
282 |
+
if image_path is not None and base64_buffer is None:
|
283 |
+
image_buffer_base64 = encode_image_to_base64(image_path)
|
284 |
+
elif image_path is None and base64_buffer is not None:
|
285 |
+
image_buffer_base64 = deepcopy(base64_buffer)
|
286 |
+
else:
|
287 |
+
print("Please pass either 'image_path' or 'base64_buffer'")
|
288 |
+
return None
|
289 |
+
|
290 |
+
# Decode base64 buffer and save to local disk
|
291 |
+
if image_buffer_base64 is not None:
|
292 |
+
image_data = base64.b64decode(image_buffer_base64)
|
293 |
+
uuid_string = str(uuid.uuid4())
|
294 |
+
temp_image_path = f'{TEMP_DIR}/{uuid_string}.png'
|
295 |
+
with open(temp_image_path, 'wb') as image_file:
|
296 |
+
image_file.write(image_data)
|
297 |
+
return temp_image_path
|
298 |
+
else:
|
299 |
+
return None
|
300 |
+
|
301 |
+
def process_input_dict(input_dict):
|
302 |
+
|
303 |
+
decoded_input_dict = {}
|
304 |
+
|
305 |
+
decoded_input_dict["save_fps"] = input_dict.get("save_fps", 25)
|
306 |
+
|
307 |
+
image_base64_buffer = input_dict.get("image_buffer", None)
|
308 |
+
if image_base64_buffer is not None:
|
309 |
+
decoded_input_dict["image_path"] = save_image_base64_to_local(
|
310 |
+
image_path=None,
|
311 |
+
base64_buffer=image_base64_buffer)
|
312 |
+
else:
|
313 |
+
decoded_input_dict["image_path"] = None
|
314 |
+
|
315 |
+
audio_base64_buffer = input_dict.get("audio_buffer", None)
|
316 |
+
if audio_base64_buffer is not None:
|
317 |
+
decoded_input_dict["audio_path"] = save_audio_base64_to_local(
|
318 |
+
audio_path=None,
|
319 |
+
base64_buffer=audio_base64_buffer)
|
320 |
+
else:
|
321 |
+
decoded_input_dict["audio_path"] = None
|
322 |
+
|
323 |
+
decoded_input_dict["prompt"] = input_dict.get("text", None)
|
324 |
+
|
325 |
+
return decoded_input_dict
|
hymm_sp/__init__.py
ADDED
File without changes
|
hymm_sp/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (221 Bytes). View file
|
|
hymm_sp/__pycache__/config.cpython-310.pyc
ADDED
Binary file (7.46 kB). View file
|
|
hymm_sp/__pycache__/constants.cpython-310.pyc
ADDED
Binary file (1.43 kB). View file
|
|
hymm_sp/__pycache__/helpers.cpython-310.pyc
ADDED
Binary file (4.11 kB). View file
|
|
hymm_sp/__pycache__/inference.cpython-310.pyc
ADDED
Binary file (5.03 kB). View file
|
|
hymm_sp/__pycache__/sample_inference_audio.cpython-310.pyc
ADDED
Binary file (8.71 kB). View file
|
|
hymm_sp/config.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from hymm_sp.constants import *
|
3 |
+
import re
|
4 |
+
import collections.abc
|
5 |
+
|
6 |
+
def as_tuple(x):
|
7 |
+
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
|
8 |
+
return tuple(x)
|
9 |
+
if x is None or isinstance(x, (int, float, str)):
|
10 |
+
return (x,)
|
11 |
+
else:
|
12 |
+
raise ValueError(f"Unknown type {type(x)}")
|
13 |
+
|
14 |
+
def parse_args(namespace=None):
|
15 |
+
parser = argparse.ArgumentParser(description="Hunyuan Multimodal training/inference script")
|
16 |
+
parser = add_extra_args(parser)
|
17 |
+
args = parser.parse_args(namespace=namespace)
|
18 |
+
args = sanity_check_args(args)
|
19 |
+
return args
|
20 |
+
|
21 |
+
def add_extra_args(parser: argparse.ArgumentParser):
|
22 |
+
parser = add_network_args(parser)
|
23 |
+
parser = add_extra_models_args(parser)
|
24 |
+
parser = add_denoise_schedule_args(parser)
|
25 |
+
parser = add_evaluation_args(parser)
|
26 |
+
return parser
|
27 |
+
|
28 |
+
def add_network_args(parser: argparse.ArgumentParser):
|
29 |
+
group = parser.add_argument_group(title="Network")
|
30 |
+
group.add_argument("--model", type=str, default="HYVideo-T/2",
|
31 |
+
help="Model architecture to use. It it also used to determine the experiment directory.")
|
32 |
+
group.add_argument("--latent-channels", type=str, default=None,
|
33 |
+
help="Number of latent channels of DiT. If None, it will be determined by `vae`. If provided, "
|
34 |
+
"it still needs to match the latent channels of the VAE model.")
|
35 |
+
group.add_argument("--rope-theta", type=int, default=256, help="Theta used in RoPE.")
|
36 |
+
return parser
|
37 |
+
|
38 |
+
def add_extra_models_args(parser: argparse.ArgumentParser):
|
39 |
+
group = parser.add_argument_group(title="Extra Models (VAE, Text Encoder, Tokenizer)")
|
40 |
+
|
41 |
+
# VAE
|
42 |
+
group.add_argument("--vae", type=str, default="884-16c-hy0801", help="Name of the VAE model.")
|
43 |
+
group.add_argument("--vae-precision", type=str, default="fp16",
|
44 |
+
help="Precision mode for the VAE model.")
|
45 |
+
group.add_argument("--vae-tiling", action="store_true", default=True, help="Enable tiling for the VAE model.")
|
46 |
+
group.add_argument("--text-encoder", type=str, default="llava-llama-3-8b", choices=list(TEXT_ENCODER_PATH),
|
47 |
+
help="Name of the text encoder model.")
|
48 |
+
group.add_argument("--text-encoder-precision", type=str, default="fp16", choices=PRECISIONS,
|
49 |
+
help="Precision mode for the text encoder model.")
|
50 |
+
group.add_argument("--text-states-dim", type=int, default=4096, help="Dimension of the text encoder hidden states.")
|
51 |
+
group.add_argument("--text-len", type=int, default=256, help="Maximum length of the text input.")
|
52 |
+
group.add_argument("--tokenizer", type=str, default="llava-llama-3-8b", choices=list(TOKENIZER_PATH),
|
53 |
+
help="Name of the tokenizer model.")
|
54 |
+
group.add_argument("--text-encoder-infer-mode", type=str, default="encoder", choices=["encoder", "decoder"],
|
55 |
+
help="Inference mode for the text encoder model. It should match the text encoder type. T5 and "
|
56 |
+
"CLIP can only work in 'encoder' mode, while Llava/GLM can work in both modes.")
|
57 |
+
group.add_argument("--prompt-template-video", type=str, default='li-dit-encode-video', choices=PROMPT_TEMPLATE,
|
58 |
+
help="Video prompt template for the decoder-only text encoder model.")
|
59 |
+
group.add_argument("--hidden-state-skip-layer", type=int, default=2,
|
60 |
+
help="Skip layer for hidden states.")
|
61 |
+
group.add_argument("--apply-final-norm", action="store_true",
|
62 |
+
help="Apply final normalization to the used text encoder hidden states.")
|
63 |
+
|
64 |
+
# - CLIP
|
65 |
+
group.add_argument("--text-encoder-2", type=str, default='clipL', choices=list(TEXT_ENCODER_PATH),
|
66 |
+
help="Name of the second text encoder model.")
|
67 |
+
group.add_argument("--text-encoder-precision-2", type=str, default="fp16", choices=PRECISIONS,
|
68 |
+
help="Precision mode for the second text encoder model.")
|
69 |
+
group.add_argument("--text-states-dim-2", type=int, default=768,
|
70 |
+
help="Dimension of the second text encoder hidden states.")
|
71 |
+
group.add_argument("--tokenizer-2", type=str, default='clipL', choices=list(TOKENIZER_PATH),
|
72 |
+
help="Name of the second tokenizer model.")
|
73 |
+
group.add_argument("--text-len-2", type=int, default=77, help="Maximum length of the second text input.")
|
74 |
+
group.set_defaults(use_attention_mask=True)
|
75 |
+
group.add_argument("--text-projection", type=str, default="single_refiner", choices=TEXT_PROJECTION,
|
76 |
+
help="A projection layer for bridging the text encoder hidden states and the diffusion model "
|
77 |
+
"conditions.")
|
78 |
+
return parser
|
79 |
+
|
80 |
+
|
81 |
+
def add_denoise_schedule_args(parser: argparse.ArgumentParser):
|
82 |
+
group = parser.add_argument_group(title="Denoise schedule")
|
83 |
+
group.add_argument("--flow-shift-eval-video", type=float, default=None, help="Shift factor for flow matching schedulers when using video data.")
|
84 |
+
group.add_argument("--flow-reverse", action="store_true", default=True, help="If reverse, learning/sampling from t=1 -> t=0.")
|
85 |
+
group.add_argument("--flow-solver", type=str, default="euler", help="Solver for flow matching.")
|
86 |
+
group.add_argument("--use-linear-quadratic-schedule", action="store_true", help="Use linear quadratic schedule for flow matching."
|
87 |
+
"Follow MovieGen (https://ai.meta.com/static-resource/movie-gen-research-paper)")
|
88 |
+
group.add_argument("--linear-schedule-end", type=int, default=25, help="End step for linear quadratic schedule for flow matching.")
|
89 |
+
return parser
|
90 |
+
|
91 |
+
def add_evaluation_args(parser: argparse.ArgumentParser):
|
92 |
+
group = parser.add_argument_group(title="Validation Loss Evaluation")
|
93 |
+
parser.add_argument("--precision", type=str, default="bf16", choices=PRECISIONS,
|
94 |
+
help="Precision mode. Options: fp32, fp16, bf16. Applied to the backbone model and optimizer.")
|
95 |
+
parser.add_argument("--reproduce", action="store_true",
|
96 |
+
help="Enable reproducibility by setting random seeds and deterministic algorithms.")
|
97 |
+
parser.add_argument("--ckpt", type=str, help="Path to the checkpoint to evaluate.")
|
98 |
+
parser.add_argument("--load-key", type=str, default="module", choices=["module", "ema"],
|
99 |
+
help="Key to load the model states. 'module' for the main model, 'ema' for the EMA model.")
|
100 |
+
parser.add_argument("--cpu-offload", action="store_true", help="Use CPU offload for the model load.")
|
101 |
+
parser.add_argument("--infer-min", action="store_true", help="infer 5s.")
|
102 |
+
group.add_argument( "--use-fp8", action="store_true", help="Enable use fp8 for inference acceleration.")
|
103 |
+
group.add_argument("--video-size", type=int, nargs='+', default=512,
|
104 |
+
help="Video size for training. If a single value is provided, it will be used for both width "
|
105 |
+
"and height. If two values are provided, they will be used for width and height "
|
106 |
+
"respectively.")
|
107 |
+
group.add_argument("--sample-n-frames", type=int, default=1,
|
108 |
+
help="How many frames to sample from a video. if using 3d vae, the number should be 4n+1")
|
109 |
+
group.add_argument("--infer-steps", type=int, default=100, help="Number of denoising steps for inference.")
|
110 |
+
group.add_argument("--val-disable-autocast", action="store_true",
|
111 |
+
help="Disable autocast for denoising loop and vae decoding in pipeline sampling.")
|
112 |
+
group.add_argument("--num-images", type=int, default=1, help="Number of images to generate for each prompt.")
|
113 |
+
group.add_argument("--seed", type=int, default=1024, help="Seed for evaluation.")
|
114 |
+
group.add_argument("--save-path-suffix", type=str, default="", help="Suffix for the directory of saved samples.")
|
115 |
+
group.add_argument("--pos-prompt", type=str, default='', help="Prompt for sampling during evaluation.")
|
116 |
+
group.add_argument("--neg-prompt", type=str, default='', help="Negative prompt for sampling during evaluation.")
|
117 |
+
group.add_argument("--image-size", type=int, default=704)
|
118 |
+
group.add_argument("--pad-face-size", type=float, default=0.7, help="Pad bbox for face align.")
|
119 |
+
group.add_argument("--image-path", type=str, default="", help="")
|
120 |
+
group.add_argument("--save-path", type=str, default=None, help="Path to save the generated samples.")
|
121 |
+
group.add_argument("--input", type=str, default=None, help="test data.")
|
122 |
+
group.add_argument("--item-name", type=str, default=None, help="")
|
123 |
+
group.add_argument("--cfg-scale", type=float, default=7.5, help="Classifier free guidance scale.")
|
124 |
+
group.add_argument("--ip-cfg-scale", type=float, default=0, help="Classifier free guidance scale.")
|
125 |
+
group.add_argument("--use-deepcache", type=int, default=1)
|
126 |
+
return parser
|
127 |
+
|
128 |
+
def sanity_check_args(args):
|
129 |
+
# VAE channels
|
130 |
+
vae_pattern = r"\d{2,3}-\d{1,2}c-\w+"
|
131 |
+
if not re.match(vae_pattern, args.vae):
|
132 |
+
raise ValueError(
|
133 |
+
f"Invalid VAE model: {args.vae}. Must be in the format of '{vae_pattern}'."
|
134 |
+
)
|
135 |
+
vae_channels = int(args.vae.split("-")[1][:-1])
|
136 |
+
if args.latent_channels is None:
|
137 |
+
args.latent_channels = vae_channels
|
138 |
+
if vae_channels != args.latent_channels:
|
139 |
+
raise ValueError(
|
140 |
+
f"Latent channels ({args.latent_channels}) must match the VAE channels ({vae_channels})."
|
141 |
+
)
|
142 |
+
return args
|
hymm_sp/constants.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
|
4 |
+
__all__ = [
|
5 |
+
"PROMPT_TEMPLATE", "MODEL_BASE", "PRECISION_TO_TYPE",
|
6 |
+
"PRECISIONS", "VAE_PATH", "TEXT_ENCODER_PATH", "TOKENIZER_PATH",
|
7 |
+
"TEXT_PROJECTION",
|
8 |
+
]
|
9 |
+
|
10 |
+
# =================== Constant Values =====================
|
11 |
+
|
12 |
+
PRECISION_TO_TYPE = {
|
13 |
+
'fp32': torch.float32,
|
14 |
+
'fp16': torch.float16,
|
15 |
+
'bf16': torch.bfloat16,
|
16 |
+
}
|
17 |
+
|
18 |
+
PROMPT_TEMPLATE_ENCODE_VIDEO = (
|
19 |
+
"<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: "
|
20 |
+
"1. The main content and theme of the video."
|
21 |
+
"2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects."
|
22 |
+
"3. Actions, events, behaviors temporal relationships, physical movement changes of the objects."
|
23 |
+
"4. background environment, light, style and atmosphere."
|
24 |
+
"5. camera angles, movements, and transitions used in the video:<|eot_id|>"
|
25 |
+
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
|
26 |
+
)
|
27 |
+
|
28 |
+
PROMPT_TEMPLATE = {
|
29 |
+
"li-dit-encode-video": {"template": PROMPT_TEMPLATE_ENCODE_VIDEO, "crop_start": 95},
|
30 |
+
}
|
31 |
+
|
32 |
+
# ======================= Model ======================
|
33 |
+
PRECISIONS = {"fp32", "fp16", "bf16"}
|
34 |
+
|
35 |
+
# =================== Model Path =====================
|
36 |
+
MODEL_BASE = os.getenv("MODEL_BASE")
|
37 |
+
MODEL_BASE=f"{MODEL_BASE}/ckpts"
|
38 |
+
|
39 |
+
# 3D VAE
|
40 |
+
VAE_PATH = {
|
41 |
+
"884-16c-hy0801": f"{MODEL_BASE}/hunyuan-video-t2v-720p/vae",
|
42 |
+
}
|
43 |
+
|
44 |
+
# Text Encoder
|
45 |
+
TEXT_ENCODER_PATH = {
|
46 |
+
"clipL": f"{MODEL_BASE}/text_encoder_2",
|
47 |
+
"llava-llama-3-8b": f"{MODEL_BASE}/llava_llama_image",
|
48 |
+
}
|
49 |
+
|
50 |
+
# Tokenizer
|
51 |
+
TOKENIZER_PATH = {
|
52 |
+
"clipL": f"{MODEL_BASE}/text_encoder_2",
|
53 |
+
"llava-llama-3-8b":f"{MODEL_BASE}/llava_llama_image",
|
54 |
+
}
|
55 |
+
|
56 |
+
TEXT_PROJECTION = {
|
57 |
+
"linear", # Default, an nn.Linear() layer
|
58 |
+
"single_refiner", # Single TokenRefiner. Refer to LI-DiT
|
59 |
+
}
|
hymm_sp/data_kits/__pycache__/audio_dataset.cpython-310.pyc
ADDED
Binary file (5.05 kB). View file
|
|
hymm_sp/data_kits/__pycache__/audio_preprocessor.cpython-310.pyc
ADDED
Binary file (2.32 kB). View file
|
|
hymm_sp/data_kits/__pycache__/data_tools.cpython-310.pyc
ADDED
Binary file (1.62 kB). View file
|
|
hymm_sp/data_kits/__pycache__/ffmpeg_utils.cpython-310.pyc
ADDED
Binary file (4.02 kB). View file
|
|
hymm_sp/data_kits/audio_dataset.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import math
|
4 |
+
import json
|
5 |
+
import torch
|
6 |
+
import random
|
7 |
+
import librosa
|
8 |
+
import traceback
|
9 |
+
import torchvision
|
10 |
+
import numpy as np
|
11 |
+
import pandas as pd
|
12 |
+
from PIL import Image
|
13 |
+
from einops import rearrange
|
14 |
+
from torch.utils.data import Dataset
|
15 |
+
from decord import VideoReader, cpu
|
16 |
+
from transformers import CLIPImageProcessor
|
17 |
+
import torchvision.transforms as transforms
|
18 |
+
from torchvision.transforms import ToPILImage
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
def get_audio_feature(feature_extractor, audio_path):
|
23 |
+
audio_input, sampling_rate = librosa.load(audio_path, sr=16000)
|
24 |
+
assert sampling_rate == 16000
|
25 |
+
|
26 |
+
audio_features = []
|
27 |
+
window = 750*640
|
28 |
+
for i in range(0, len(audio_input), window):
|
29 |
+
audio_feature = feature_extractor(audio_input[i:i+window],
|
30 |
+
sampling_rate=sampling_rate,
|
31 |
+
return_tensors="pt",
|
32 |
+
).input_features
|
33 |
+
audio_features.append(audio_feature)
|
34 |
+
|
35 |
+
audio_features = torch.cat(audio_features, dim=-1)
|
36 |
+
return audio_features, len(audio_input) // 640
|
37 |
+
|
38 |
+
|
39 |
+
class VideoAudioTextLoaderVal(Dataset):
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
image_size: int,
|
43 |
+
meta_file: str,
|
44 |
+
**kwargs,
|
45 |
+
):
|
46 |
+
super().__init__()
|
47 |
+
self.meta_file = meta_file
|
48 |
+
self.image_size = image_size
|
49 |
+
self.text_encoder = kwargs.get("text_encoder", None) # llava_text_encoder
|
50 |
+
self.text_encoder_2 = kwargs.get("text_encoder_2", None) # clipL_text_encoder
|
51 |
+
self.feature_extractor = kwargs.get("feature_extractor", None)
|
52 |
+
self.meta_files = []
|
53 |
+
|
54 |
+
csv_data = pd.read_csv(meta_file)
|
55 |
+
for idx in range(len(csv_data)):
|
56 |
+
self.meta_files.append(
|
57 |
+
{
|
58 |
+
"videoid": str(csv_data["videoid"][idx]),
|
59 |
+
"image_path": str(csv_data["image"][idx]),
|
60 |
+
"audio_path": str(csv_data["audio"][idx]),
|
61 |
+
"prompt": str(csv_data["prompt"][idx]),
|
62 |
+
"fps": float(csv_data["fps"][idx])
|
63 |
+
}
|
64 |
+
)
|
65 |
+
|
66 |
+
self.llava_transform = transforms.Compose(
|
67 |
+
[
|
68 |
+
transforms.Resize((336, 336), interpolation=transforms.InterpolationMode.BILINEAR),
|
69 |
+
transforms.ToTensor(),
|
70 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.4082107), (0.26862954, 0.26130258, 0.27577711)),
|
71 |
+
]
|
72 |
+
)
|
73 |
+
self.clip_image_processor = CLIPImageProcessor()
|
74 |
+
|
75 |
+
self.device = torch.device("cuda")
|
76 |
+
self.weight_dtype = torch.float16
|
77 |
+
|
78 |
+
|
79 |
+
def __len__(self):
|
80 |
+
return len(self.meta_files)
|
81 |
+
|
82 |
+
@staticmethod
|
83 |
+
def get_text_tokens(text_encoder, description, dtype_encode="video"):
|
84 |
+
text_inputs = text_encoder.text2tokens(description, data_type=dtype_encode)
|
85 |
+
text_ids = text_inputs["input_ids"].squeeze(0)
|
86 |
+
text_mask = text_inputs["attention_mask"].squeeze(0)
|
87 |
+
return text_ids, text_mask
|
88 |
+
|
89 |
+
def get_batch_data(self, idx):
|
90 |
+
meta_file = self.meta_files[idx]
|
91 |
+
videoid = meta_file["videoid"]
|
92 |
+
image_path = meta_file["image_path"]
|
93 |
+
audio_path = meta_file["audio_path"]
|
94 |
+
prompt = "Authentic, Realistic, Natural, High-quality, Lens-Fixed, " + meta_file["prompt"]
|
95 |
+
fps = meta_file["fps"]
|
96 |
+
|
97 |
+
img_size = self.image_size
|
98 |
+
ref_image = Image.open(image_path).convert('RGB')
|
99 |
+
|
100 |
+
# Resize reference image
|
101 |
+
w, h = ref_image.size
|
102 |
+
scale = img_size / min(w, h)
|
103 |
+
new_w = round(w * scale / 64) * 64
|
104 |
+
new_h = round(h * scale / 64) * 64
|
105 |
+
|
106 |
+
if img_size == 704:
|
107 |
+
img_size_long = 1216
|
108 |
+
if new_w * new_h > img_size * img_size_long:
|
109 |
+
import math
|
110 |
+
scale = math.sqrt(img_size * img_size_long / w / h)
|
111 |
+
new_w = round(w * scale / 64) * 64
|
112 |
+
new_h = round(h * scale / 64) * 64
|
113 |
+
|
114 |
+
ref_image = ref_image.resize((new_w, new_h), Image.LANCZOS)
|
115 |
+
|
116 |
+
ref_image = np.array(ref_image)
|
117 |
+
ref_image = torch.from_numpy(ref_image)
|
118 |
+
|
119 |
+
audio_input, audio_len = get_audio_feature(self.feature_extractor, audio_path)
|
120 |
+
audio_prompts = audio_input[0]
|
121 |
+
|
122 |
+
motion_bucket_id_heads = np.array([25] * 4)
|
123 |
+
motion_bucket_id_exps = np.array([30] * 4)
|
124 |
+
motion_bucket_id_heads = torch.from_numpy(motion_bucket_id_heads)
|
125 |
+
motion_bucket_id_exps = torch.from_numpy(motion_bucket_id_exps)
|
126 |
+
fps = torch.from_numpy(np.array(fps))
|
127 |
+
|
128 |
+
to_pil = ToPILImage()
|
129 |
+
pixel_value_ref = rearrange(ref_image.clone().unsqueeze(0), "b h w c -> b c h w") # (b c h w)
|
130 |
+
|
131 |
+
pixel_value_ref_llava = [self.llava_transform(to_pil(image)) for image in pixel_value_ref]
|
132 |
+
pixel_value_ref_llava = torch.stack(pixel_value_ref_llava, dim=0)
|
133 |
+
pixel_value_ref_clip = self.clip_image_processor(
|
134 |
+
images=Image.fromarray((pixel_value_ref[0].permute(1,2,0)).data.cpu().numpy().astype(np.uint8)),
|
135 |
+
return_tensors="pt"
|
136 |
+
).pixel_values[0]
|
137 |
+
pixel_value_ref_clip = pixel_value_ref_clip.unsqueeze(0)
|
138 |
+
|
139 |
+
# Encode text prompts
|
140 |
+
|
141 |
+
text_ids, text_mask = self.get_text_tokens(self.text_encoder, prompt)
|
142 |
+
text_ids_2, text_mask_2 = self.get_text_tokens(self.text_encoder_2, prompt)
|
143 |
+
|
144 |
+
# Output batch
|
145 |
+
batch = {
|
146 |
+
"text_prompt": prompt, #
|
147 |
+
"videoid": videoid,
|
148 |
+
"pixel_value_ref": pixel_value_ref.to(dtype=torch.float16), # 参考图,用于vae提特征 (1, 3, h, w), 取值范围(0, 255)
|
149 |
+
"pixel_value_ref_llava": pixel_value_ref_llava.to(dtype=torch.float16), # 参考图,用于llava提特征 (1, 3, 336, 336), 取值范围 = CLIP取值范围
|
150 |
+
"pixel_value_ref_clip": pixel_value_ref_clip.to(dtype=torch.float16), # 参考图,用于clip_image_encoder提特征 (1, 3, 244, 244), 取值范围 = CLIP取值范围
|
151 |
+
"audio_prompts": audio_prompts.to(dtype=torch.float16),
|
152 |
+
"motion_bucket_id_heads": motion_bucket_id_heads.to(dtype=text_ids.dtype),
|
153 |
+
"motion_bucket_id_exps": motion_bucket_id_exps.to(dtype=text_ids.dtype),
|
154 |
+
"fps": fps.to(dtype=torch.float16),
|
155 |
+
"text_ids": text_ids.clone(), # 对应llava_text_encoder
|
156 |
+
"text_mask": text_mask.clone(), # 对应llava_text_encoder
|
157 |
+
"text_ids_2": text_ids_2.clone(), # 对应clip_text_encoder
|
158 |
+
"text_mask_2": text_mask_2.clone(), # 对应clip_text_encoder
|
159 |
+
"audio_len": audio_len,
|
160 |
+
"image_path": image_path,
|
161 |
+
"audio_path": audio_path,
|
162 |
+
}
|
163 |
+
return batch
|
164 |
+
|
165 |
+
def __getitem__(self, idx):
|
166 |
+
return self.get_batch_data(idx)
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
|
hymm_sp/data_kits/audio_preprocessor.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import cv2
|
4 |
+
import json
|
5 |
+
import time
|
6 |
+
import decord
|
7 |
+
import einops
|
8 |
+
import librosa
|
9 |
+
import torch
|
10 |
+
import random
|
11 |
+
import argparse
|
12 |
+
import traceback
|
13 |
+
import numpy as np
|
14 |
+
from tqdm import tqdm
|
15 |
+
from PIL import Image
|
16 |
+
from einops import rearrange
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
def get_facemask(ref_image, align_instance, area=1.25):
|
21 |
+
# ref_image: (b f c h w)
|
22 |
+
bsz, f, c, h, w = ref_image.shape
|
23 |
+
images = rearrange(ref_image, "b f c h w -> (b f) h w c").data.cpu().numpy().astype(np.uint8)
|
24 |
+
face_masks = []
|
25 |
+
for image in images:
|
26 |
+
image_pil = Image.fromarray(image).convert("RGB")
|
27 |
+
_, _, bboxes_list = align_instance(np.array(image_pil)[:,:,[2,1,0]], maxface=True)
|
28 |
+
try:
|
29 |
+
bboxSrc = bboxes_list[0]
|
30 |
+
except:
|
31 |
+
bboxSrc = [0, 0, w, h]
|
32 |
+
x1, y1, ww, hh = bboxSrc
|
33 |
+
x2, y2 = x1 + ww, y1 + hh
|
34 |
+
ww, hh = (x2-x1) * area, (y2-y1) * area
|
35 |
+
center = [(x2+x1)//2, (y2+y1)//2]
|
36 |
+
x1 = max(center[0] - ww//2, 0)
|
37 |
+
y1 = max(center[1] - hh//2, 0)
|
38 |
+
x2 = min(center[0] + ww//2, w)
|
39 |
+
y2 = min(center[1] + hh//2, h)
|
40 |
+
|
41 |
+
face_mask = np.zeros_like(np.array(image_pil))
|
42 |
+
face_mask[int(y1):int(y2), int(x1):int(x2)] = 1.0
|
43 |
+
face_masks.append(torch.from_numpy(face_mask[...,:1]))
|
44 |
+
face_masks = torch.stack(face_masks, dim=0) # (b*f, h, w, c)
|
45 |
+
face_masks = rearrange(face_masks, "(b f) h w c -> b c f h w", b=bsz, f=f)
|
46 |
+
face_masks = face_masks.to(device=ref_image.device, dtype=ref_image.dtype)
|
47 |
+
return face_masks
|
48 |
+
|
49 |
+
|
50 |
+
def encode_audio(wav2vec, audio_feats, fps, num_frames=129):
|
51 |
+
if fps == 25:
|
52 |
+
start_ts = [0]
|
53 |
+
step_ts = [1]
|
54 |
+
elif fps == 12.5:
|
55 |
+
start_ts = [0]
|
56 |
+
step_ts = [2]
|
57 |
+
num_frames = min(num_frames, 400)
|
58 |
+
audio_feats = wav2vec.encoder(audio_feats.unsqueeze(0)[:, :, :3000], output_hidden_states=True).hidden_states
|
59 |
+
audio_feats = torch.stack(audio_feats, dim=2)
|
60 |
+
audio_feats = torch.cat([torch.zeros_like(audio_feats[:,:4]), audio_feats], 1)
|
61 |
+
|
62 |
+
audio_prompts = []
|
63 |
+
for bb in range(1):
|
64 |
+
audio_feats_list = []
|
65 |
+
for f in range(num_frames):
|
66 |
+
cur_t = (start_ts[bb] + f * step_ts[bb]) * 2
|
67 |
+
audio_clip = audio_feats[bb:bb+1, cur_t: cur_t+10]
|
68 |
+
audio_feats_list.append(audio_clip)
|
69 |
+
audio_feats_list = torch.stack(audio_feats_list, 1)
|
70 |
+
audio_prompts.append(audio_feats_list)
|
71 |
+
audio_prompts = torch.cat(audio_prompts)
|
72 |
+
return audio_prompts
|
hymm_sp/data_kits/data_tools.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import imageio
|
6 |
+
import torchvision
|
7 |
+
from einops import rearrange
|
8 |
+
|
9 |
+
|
10 |
+
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8, quality=8):
|
11 |
+
videos = rearrange(videos, "b c t h w -> t b c h w")
|
12 |
+
outputs = []
|
13 |
+
for x in videos:
|
14 |
+
x = torchvision.utils.make_grid(x, nrow=n_rows)
|
15 |
+
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
16 |
+
if rescale:
|
17 |
+
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
|
18 |
+
x = torch.clamp(x,0,1)
|
19 |
+
x = (x * 255).numpy().astype(np.uint8)
|
20 |
+
outputs.append(x)
|
21 |
+
|
22 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
23 |
+
imageio.mimsave(path, outputs, fps=fps, quality=quality)
|
24 |
+
|
25 |
+
def pad_image(crop_img, size, color=(255, 255, 255), resize_ratio=1):
|
26 |
+
crop_h, crop_w = crop_img.shape[:2]
|
27 |
+
target_w, target_h = size
|
28 |
+
scale_h, scale_w = target_h / crop_h, target_w / crop_w
|
29 |
+
if scale_w > scale_h:
|
30 |
+
resize_h = int(target_h*resize_ratio)
|
31 |
+
resize_w = int(crop_w / crop_h * resize_h)
|
32 |
+
else:
|
33 |
+
resize_w = int(target_w*resize_ratio)
|
34 |
+
resize_h = int(crop_h / crop_w * resize_w)
|
35 |
+
crop_img = cv2.resize(crop_img, (resize_w, resize_h))
|
36 |
+
pad_left = (target_w - resize_w) // 2
|
37 |
+
pad_top = (target_h - resize_h) // 2
|
38 |
+
pad_right = target_w - resize_w - pad_left
|
39 |
+
pad_bottom = target_h - resize_h - pad_top
|
40 |
+
crop_img = cv2.copyMakeBorder(crop_img, pad_top, pad_bottom, pad_left, pad_right, cv2.BORDER_CONSTANT, value=color)
|
41 |
+
return crop_img
|
hymm_sp/data_kits/face_align/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .align import AlignImage
|
hymm_sp/data_kits/face_align/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (282 Bytes). View file
|
|
hymm_sp/data_kits/face_align/__pycache__/align.cpython-310.pyc
ADDED
Binary file (1.37 kB). View file
|
|
hymm_sp/data_kits/face_align/__pycache__/detface.cpython-310.pyc
ADDED
Binary file (7.98 kB). View file
|
|
hymm_sp/data_kits/face_align/align.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import torch
|
4 |
+
from .detface import DetFace
|
5 |
+
|
6 |
+
class AlignImage(object):
|
7 |
+
def __init__(self, device='cuda', det_path=''):
|
8 |
+
self.facedet = DetFace(pt_path=det_path, confThreshold=0.5, nmsThreshold=0.45, device=device)
|
9 |
+
|
10 |
+
@torch.no_grad()
|
11 |
+
def __call__(self, im, maxface=False):
|
12 |
+
bboxes, kpss, scores = self.facedet.detect(im)
|
13 |
+
face_num = bboxes.shape[0]
|
14 |
+
|
15 |
+
five_pts_list = []
|
16 |
+
scores_list = []
|
17 |
+
bboxes_list = []
|
18 |
+
for i in range(face_num):
|
19 |
+
five_pts_list.append(kpss[i].reshape(5,2))
|
20 |
+
scores_list.append(scores[i])
|
21 |
+
bboxes_list.append(bboxes[i])
|
22 |
+
|
23 |
+
if maxface and face_num>1:
|
24 |
+
max_idx = 0
|
25 |
+
max_area = (bboxes[0, 2])*(bboxes[0, 3])
|
26 |
+
for i in range(1, face_num):
|
27 |
+
area = (bboxes[i,2])*(bboxes[i,3])
|
28 |
+
if area>max_area:
|
29 |
+
max_idx = i
|
30 |
+
five_pts_list = [five_pts_list[max_idx]]
|
31 |
+
scores_list = [scores_list[max_idx]]
|
32 |
+
bboxes_list = [bboxes_list[max_idx]]
|
33 |
+
|
34 |
+
return five_pts_list, scores_list, bboxes_list
|
hymm_sp/data_kits/face_align/detface.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: UTF-8 -*-
|
2 |
+
import os
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torchvision
|
7 |
+
|
8 |
+
|
9 |
+
def xyxy2xywh(x):
|
10 |
+
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
|
11 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
12 |
+
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
|
13 |
+
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
|
14 |
+
y[:, 2] = x[:, 2] - x[:, 0] # width
|
15 |
+
y[:, 3] = x[:, 3] - x[:, 1] # height
|
16 |
+
return y
|
17 |
+
|
18 |
+
|
19 |
+
def xywh2xyxy(x):
|
20 |
+
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
21 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
22 |
+
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
23 |
+
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
24 |
+
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
|
25 |
+
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
|
26 |
+
return y
|
27 |
+
|
28 |
+
|
29 |
+
def box_iou(box1, box2):
|
30 |
+
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
31 |
+
"""
|
32 |
+
Return intersection-over-union (Jaccard index) of boxes.
|
33 |
+
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
34 |
+
Arguments:
|
35 |
+
box1 (Tensor[N, 4])
|
36 |
+
box2 (Tensor[M, 4])
|
37 |
+
Returns:
|
38 |
+
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
39 |
+
IoU values for every element in boxes1 and boxes2
|
40 |
+
"""
|
41 |
+
|
42 |
+
def box_area(box):
|
43 |
+
# box = 4xn
|
44 |
+
return (box[2] - box[0]) * (box[3] - box[1])
|
45 |
+
|
46 |
+
area1 = box_area(box1.T)
|
47 |
+
area2 = box_area(box2.T)
|
48 |
+
|
49 |
+
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
50 |
+
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) -
|
51 |
+
torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
|
52 |
+
# iou = inter / (area1 + area2 - inter)
|
53 |
+
return inter / (area1[:, None] + area2 - inter)
|
54 |
+
|
55 |
+
|
56 |
+
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
|
57 |
+
# Rescale coords (xyxy) from img1_shape to img0_shape
|
58 |
+
if ratio_pad is None: # calculate from img0_shape
|
59 |
+
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
60 |
+
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
61 |
+
else:
|
62 |
+
gain = ratio_pad[0][0]
|
63 |
+
pad = ratio_pad[1]
|
64 |
+
|
65 |
+
coords[:, [0, 2]] -= pad[0] # x padding
|
66 |
+
coords[:, [1, 3]] -= pad[1] # y padding
|
67 |
+
coords[:, :4] /= gain
|
68 |
+
clip_coords(coords, img0_shape)
|
69 |
+
return coords
|
70 |
+
|
71 |
+
|
72 |
+
def clip_coords(boxes, img_shape):
|
73 |
+
# Clip bounding xyxy bounding boxes to image shape (height, width)
|
74 |
+
boxes[:, 0].clamp_(0, img_shape[1]) # x1
|
75 |
+
boxes[:, 1].clamp_(0, img_shape[0]) # y1
|
76 |
+
boxes[:, 2].clamp_(0, img_shape[1]) # x2
|
77 |
+
boxes[:, 3].clamp_(0, img_shape[0]) # y2
|
78 |
+
|
79 |
+
|
80 |
+
def scale_coords_landmarks(img1_shape, coords, img0_shape, ratio_pad=None):
|
81 |
+
# Rescale coords (xyxy) from img1_shape to img0_shape
|
82 |
+
if ratio_pad is None: # calculate from img0_shape
|
83 |
+
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
84 |
+
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
85 |
+
else:
|
86 |
+
gain = ratio_pad[0][0]
|
87 |
+
pad = ratio_pad[1]
|
88 |
+
|
89 |
+
coords[:, [0, 2, 4, 6, 8]] -= pad[0] # x padding
|
90 |
+
coords[:, [1, 3, 5, 7, 9]] -= pad[1] # y padding
|
91 |
+
coords[:, :10] /= gain
|
92 |
+
#clip_coords(coords, img0_shape)
|
93 |
+
coords[:, 0].clamp_(0, img0_shape[1]) # x1
|
94 |
+
coords[:, 1].clamp_(0, img0_shape[0]) # y1
|
95 |
+
coords[:, 2].clamp_(0, img0_shape[1]) # x2
|
96 |
+
coords[:, 3].clamp_(0, img0_shape[0]) # y2
|
97 |
+
coords[:, 4].clamp_(0, img0_shape[1]) # x3
|
98 |
+
coords[:, 5].clamp_(0, img0_shape[0]) # y3
|
99 |
+
coords[:, 6].clamp_(0, img0_shape[1]) # x4
|
100 |
+
coords[:, 7].clamp_(0, img0_shape[0]) # y4
|
101 |
+
coords[:, 8].clamp_(0, img0_shape[1]) # x5
|
102 |
+
coords[:, 9].clamp_(0, img0_shape[0]) # y5
|
103 |
+
return coords
|
104 |
+
|
105 |
+
|
106 |
+
def show_results(img, xywh, conf, landmarks, class_num):
|
107 |
+
h,w,c = img.shape
|
108 |
+
tl = 1 or round(0.002 * (h + w) / 2) + 1 # line/font thickness
|
109 |
+
x1 = int(xywh[0] * w - 0.5 * xywh[2] * w)
|
110 |
+
y1 = int(xywh[1] * h - 0.5 * xywh[3] * h)
|
111 |
+
x2 = int(xywh[0] * w + 0.5 * xywh[2] * w)
|
112 |
+
y2 = int(xywh[1] * h + 0.5 * xywh[3] * h)
|
113 |
+
cv2.rectangle(img, (x1,y1), (x2, y2), (0,255,0), thickness=tl, lineType=cv2.LINE_AA)
|
114 |
+
|
115 |
+
clors = [(255,0,0),(0,255,0),(0,0,255),(255,255,0),(0,255,255)]
|
116 |
+
|
117 |
+
for i in range(5):
|
118 |
+
point_x = int(landmarks[2 * i] * w)
|
119 |
+
point_y = int(landmarks[2 * i + 1] * h)
|
120 |
+
cv2.circle(img, (point_x, point_y), tl+1, clors[i], -1)
|
121 |
+
|
122 |
+
tf = max(tl - 1, 1) # font thickness
|
123 |
+
label = str(conf)[:5]
|
124 |
+
cv2.putText(img, label, (x1, y1 - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
|
125 |
+
return img
|
126 |
+
|
127 |
+
|
128 |
+
def make_divisible(x, divisor):
|
129 |
+
# Returns x evenly divisible by divisor
|
130 |
+
return (x // divisor) * divisor
|
131 |
+
|
132 |
+
|
133 |
+
def non_max_suppression_face(prediction, conf_thres=0.5, iou_thres=0.45, classes=None, agnostic=False, labels=()):
|
134 |
+
"""Performs Non-Maximum Suppression (NMS) on inference results
|
135 |
+
Returns:
|
136 |
+
detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
|
137 |
+
"""
|
138 |
+
|
139 |
+
nc = prediction.shape[2] - 15 # number of classes
|
140 |
+
xc = prediction[..., 4] > conf_thres # candidates
|
141 |
+
|
142 |
+
# Settings
|
143 |
+
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
|
144 |
+
# time_limit = 10.0 # seconds to quit after
|
145 |
+
redundant = True # require redundant detections
|
146 |
+
multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
|
147 |
+
merge = False # use merge-NMS
|
148 |
+
|
149 |
+
# t = time.time()
|
150 |
+
output = [torch.zeros((0, 16), device=prediction.device)] * prediction.shape[0]
|
151 |
+
for xi, x in enumerate(prediction): # image index, image inference
|
152 |
+
# Apply constraints
|
153 |
+
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
154 |
+
x = x[xc[xi]] # confidence
|
155 |
+
|
156 |
+
# Cat apriori labels if autolabelling
|
157 |
+
if labels and len(labels[xi]):
|
158 |
+
l = labels[xi]
|
159 |
+
v = torch.zeros((len(l), nc + 15), device=x.device)
|
160 |
+
v[:, :4] = l[:, 1:5] # box
|
161 |
+
v[:, 4] = 1.0 # conf
|
162 |
+
v[range(len(l)), l[:, 0].long() + 15] = 1.0 # cls
|
163 |
+
x = torch.cat((x, v), 0)
|
164 |
+
|
165 |
+
# If none remain process next image
|
166 |
+
if not x.shape[0]:
|
167 |
+
continue
|
168 |
+
|
169 |
+
# Compute conf
|
170 |
+
x[:, 15:] *= x[:, 4:5] # conf = obj_conf * cls_conf
|
171 |
+
|
172 |
+
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
|
173 |
+
box = xywh2xyxy(x[:, :4])
|
174 |
+
|
175 |
+
# Detections matrix nx6 (xyxy, conf, landmarks, cls)
|
176 |
+
if multi_label:
|
177 |
+
i, j = (x[:, 15:] > conf_thres).nonzero(as_tuple=False).T
|
178 |
+
x = torch.cat((box[i], x[i, j + 15, None], x[i, 5:15] ,j[:, None].float()), 1)
|
179 |
+
else: # best class only
|
180 |
+
conf, j = x[:, 15:].max(1, keepdim=True)
|
181 |
+
x = torch.cat((box, conf, x[:, 5:15], j.float()), 1)[conf.view(-1) > conf_thres]
|
182 |
+
|
183 |
+
# Filter by class
|
184 |
+
if classes is not None:
|
185 |
+
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
186 |
+
|
187 |
+
# If none remain process next image
|
188 |
+
n = x.shape[0] # number of boxes
|
189 |
+
if not n:
|
190 |
+
continue
|
191 |
+
|
192 |
+
# Batched NMS
|
193 |
+
c = x[:, 15:16] * (0 if agnostic else max_wh) # classes
|
194 |
+
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
|
195 |
+
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
|
196 |
+
#if i.shape[0] > max_det: # limit detections
|
197 |
+
# i = i[:max_det]
|
198 |
+
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
199 |
+
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
200 |
+
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
201 |
+
weights = iou * scores[None] # box weights
|
202 |
+
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
203 |
+
if redundant:
|
204 |
+
i = i[iou.sum(1) > 1] # require redundancy
|
205 |
+
|
206 |
+
output[xi] = x[i]
|
207 |
+
# if (time.time() - t) > time_limit:
|
208 |
+
# break # time limit exceeded
|
209 |
+
|
210 |
+
return output
|
211 |
+
|
212 |
+
|
213 |
+
class DetFace():
|
214 |
+
def __init__(self, pt_path, confThreshold=0.5, nmsThreshold=0.45, device='cuda'):
|
215 |
+
assert os.path.exists(pt_path)
|
216 |
+
|
217 |
+
self.inpSize = 416
|
218 |
+
self.conf_thres = confThreshold
|
219 |
+
self.iou_thres = nmsThreshold
|
220 |
+
self.test_device = torch.device(device if torch.cuda.is_available() else "cpu")
|
221 |
+
self.model = torch.jit.load(pt_path).to(self.test_device)
|
222 |
+
self.last_w = 416
|
223 |
+
self.last_h = 416
|
224 |
+
self.grids = None
|
225 |
+
|
226 |
+
@torch.no_grad()
|
227 |
+
def detect(self, srcimg):
|
228 |
+
# t0=time.time()
|
229 |
+
|
230 |
+
h0, w0 = srcimg.shape[:2] # orig hw
|
231 |
+
r = self.inpSize / min(h0, w0) # resize image to img_size
|
232 |
+
h1 = int(h0*r+31)//32*32
|
233 |
+
w1 = int(w0*r+31)//32*32
|
234 |
+
|
235 |
+
img = cv2.resize(srcimg, (w1,h1), interpolation=cv2.INTER_LINEAR)
|
236 |
+
|
237 |
+
# Convert
|
238 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # BGR to RGB
|
239 |
+
|
240 |
+
# Run inference
|
241 |
+
img = torch.from_numpy(img).to(self.test_device).permute(2,0,1)
|
242 |
+
img = img.float()/255 # uint8 to fp16/32 0-1
|
243 |
+
if img.ndimension() == 3:
|
244 |
+
img = img.unsqueeze(0)
|
245 |
+
|
246 |
+
# Inference
|
247 |
+
if h1 != self.last_h or w1 != self.last_w or self.grids is None:
|
248 |
+
grids = []
|
249 |
+
for scale in [8,16,32]:
|
250 |
+
ny = h1//scale
|
251 |
+
nx = w1//scale
|
252 |
+
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
|
253 |
+
grid = torch.stack((xv, yv), 2).view((1,1,ny, nx, 2)).float()
|
254 |
+
grids.append(grid.to(self.test_device))
|
255 |
+
self.grids = grids
|
256 |
+
self.last_w = w1
|
257 |
+
self.last_h = h1
|
258 |
+
|
259 |
+
pred = self.model(img, self.grids).cpu()
|
260 |
+
|
261 |
+
# Apply NMS
|
262 |
+
det = non_max_suppression_face(pred, self.conf_thres, self.iou_thres)[0]
|
263 |
+
# Process detections
|
264 |
+
# det = pred[0]
|
265 |
+
bboxes = np.zeros((det.shape[0], 4))
|
266 |
+
kpss = np.zeros((det.shape[0], 5, 2))
|
267 |
+
scores = np.zeros((det.shape[0]))
|
268 |
+
# gn = torch.tensor([w0, h0, w0, h0]).to(pred) # normalization gain whwh
|
269 |
+
# gn_lks = torch.tensor([w0, h0, w0, h0, w0, h0, w0, h0, w0, h0]).to(pred) # normalization gain landmarks
|
270 |
+
det = det.cpu().numpy()
|
271 |
+
|
272 |
+
for j in range(det.shape[0]):
|
273 |
+
# xywh = (xyxy2xywh(det[j, :4].view(1, 4)) / gn).view(4).cpu().numpy()
|
274 |
+
bboxes[j, 0] = det[j, 0] * w0/w1
|
275 |
+
bboxes[j, 1] = det[j, 1] * h0/h1
|
276 |
+
bboxes[j, 2] = det[j, 2] * w0/w1 - bboxes[j, 0]
|
277 |
+
bboxes[j, 3] = det[j, 3] * h0/h1 - bboxes[j, 1]
|
278 |
+
scores[j] = det[j, 4]
|
279 |
+
# landmarks = (det[j, 5:15].view(1, 10) / gn_lks).view(5,2).cpu().numpy()
|
280 |
+
kpss[j, :, :] = det[j, 5:15].reshape(5, 2) * np.array([[w0/w1,h0/h1]])
|
281 |
+
# class_num = det[j, 15].cpu().numpy()
|
282 |
+
# orgimg = show_results(orgimg, xywh, conf, landmarks, class_num)
|
283 |
+
return bboxes, kpss, scores
|
hymm_sp/data_kits/ffmpeg_utils.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import skvideo
|
2 |
+
# assert skvideo.__version__ >= "1.1.11"
|
3 |
+
import os
|
4 |
+
|
5 |
+
import skvideo.io
|
6 |
+
import cv2
|
7 |
+
|
8 |
+
# install the following packages: #
|
9 |
+
# conda install -c conda-forge scikit-video ffmpeg #
|
10 |
+
import os
|
11 |
+
import torch
|
12 |
+
import torchvision
|
13 |
+
from PIL import Image
|
14 |
+
import numpy as np
|
15 |
+
from einops import rearrange
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
class VideoUtils(object):
|
20 |
+
def __init__(self, video_path=None, output_video_path=None, bit_rate='origin', fps=25):
|
21 |
+
if video_path is not None:
|
22 |
+
meta_data = skvideo.io.ffprobe(video_path)
|
23 |
+
# avg_frame_rate = meta_data['video']['@r_frame_rate']
|
24 |
+
# a, b = avg_frame_rate.split('/')
|
25 |
+
# fps = float(a) / float(b)
|
26 |
+
# fps = 25
|
27 |
+
codec_name = 'libx264'
|
28 |
+
# codec_name = meta_data['video'].get('@codec_name')
|
29 |
+
# if codec_name=='hevc':
|
30 |
+
# codec_name='h264'
|
31 |
+
# profile = meta_data['video'].get('@profile')
|
32 |
+
color_space = meta_data['video'].get('@color_space')
|
33 |
+
color_transfer = meta_data['video'].get('@color_transfer')
|
34 |
+
color_primaries = meta_data['video'].get('@color_primaries')
|
35 |
+
color_range = meta_data['video'].get('@color_range')
|
36 |
+
pix_fmt = meta_data['video'].get('@pix_fmt')
|
37 |
+
if bit_rate=='origin':
|
38 |
+
bit_rate = meta_data['video'].get('@bit_rate')
|
39 |
+
else:
|
40 |
+
bit_rate=None
|
41 |
+
if pix_fmt is None:
|
42 |
+
pix_fmt = 'yuv420p'
|
43 |
+
|
44 |
+
reader_output_dict = {'-r': str(fps)}
|
45 |
+
writer_input_dict = {'-r': str(fps)}
|
46 |
+
writer_output_dict = {'-pix_fmt': pix_fmt, '-r': str(fps), '-vcodec':str(codec_name)}
|
47 |
+
# if bit_rate is not None:
|
48 |
+
# writer_output_dict['-b:v'] = bit_rate
|
49 |
+
writer_output_dict['-crf'] = '17'
|
50 |
+
|
51 |
+
# if video has alpha channel, convert to bgra, uint16 to process
|
52 |
+
if pix_fmt.startswith('yuva'):
|
53 |
+
writer_input_dict['-pix_fmt'] = 'bgra64le'
|
54 |
+
reader_output_dict['-pix_fmt'] = 'bgra64le'
|
55 |
+
elif pix_fmt.endswith('le'):
|
56 |
+
writer_input_dict['-pix_fmt'] = 'bgr48le'
|
57 |
+
reader_output_dict['-pix_fmt'] = 'bgr48le'
|
58 |
+
else:
|
59 |
+
writer_input_dict['-pix_fmt'] = 'bgr24'
|
60 |
+
reader_output_dict['-pix_fmt'] = 'bgr24'
|
61 |
+
|
62 |
+
if color_range is not None:
|
63 |
+
writer_output_dict['-color_range'] = color_range
|
64 |
+
writer_input_dict['-color_range'] = color_range
|
65 |
+
if color_space is not None:
|
66 |
+
writer_output_dict['-colorspace'] = color_space
|
67 |
+
writer_input_dict['-colorspace'] = color_space
|
68 |
+
if color_primaries is not None:
|
69 |
+
writer_output_dict['-color_primaries'] = color_primaries
|
70 |
+
writer_input_dict['-color_primaries'] = color_primaries
|
71 |
+
if color_transfer is not None:
|
72 |
+
writer_output_dict['-color_trc'] = color_transfer
|
73 |
+
writer_input_dict['-color_trc'] = color_transfer
|
74 |
+
|
75 |
+
writer_output_dict['-sws_flags'] = 'full_chroma_int+bitexact+accurate_rnd'
|
76 |
+
reader_output_dict['-sws_flags'] = 'full_chroma_int+bitexact+accurate_rnd'
|
77 |
+
# writer_input_dict['-pix_fmt'] = 'bgr48le'
|
78 |
+
# reader_output_dict = {'-pix_fmt': 'bgr48le'}
|
79 |
+
|
80 |
+
# -s 1920x1080
|
81 |
+
# writer_input_dict['-s'] = '1920x1080'
|
82 |
+
# writer_output_dict['-s'] = '1920x1080'
|
83 |
+
# writer_input_dict['-s'] = '1080x1920'
|
84 |
+
# writer_output_dict['-s'] = '1080x1920'
|
85 |
+
|
86 |
+
print(writer_input_dict)
|
87 |
+
print(writer_output_dict)
|
88 |
+
|
89 |
+
self.reader = skvideo.io.FFmpegReader(video_path, outputdict=reader_output_dict)
|
90 |
+
else:
|
91 |
+
|
92 |
+
# fps = 25
|
93 |
+
codec_name = 'libx264'
|
94 |
+
bit_rate=None
|
95 |
+
pix_fmt = 'yuv420p'
|
96 |
+
|
97 |
+
reader_output_dict = {'-r': str(fps)}
|
98 |
+
writer_input_dict = {'-r': str(fps)}
|
99 |
+
writer_output_dict = {'-pix_fmt': pix_fmt, '-r': str(fps), '-vcodec':str(codec_name)}
|
100 |
+
# if bit_rate is not None:
|
101 |
+
# writer_output_dict['-b:v'] = bit_rate
|
102 |
+
writer_output_dict['-crf'] = '17'
|
103 |
+
|
104 |
+
# if video has alpha channel, convert to bgra, uint16 to process
|
105 |
+
if pix_fmt.startswith('yuva'):
|
106 |
+
writer_input_dict['-pix_fmt'] = 'bgra64le'
|
107 |
+
reader_output_dict['-pix_fmt'] = 'bgra64le'
|
108 |
+
elif pix_fmt.endswith('le'):
|
109 |
+
writer_input_dict['-pix_fmt'] = 'bgr48le'
|
110 |
+
reader_output_dict['-pix_fmt'] = 'bgr48le'
|
111 |
+
else:
|
112 |
+
writer_input_dict['-pix_fmt'] = 'bgr24'
|
113 |
+
reader_output_dict['-pix_fmt'] = 'bgr24'
|
114 |
+
|
115 |
+
writer_output_dict['-sws_flags'] = 'full_chroma_int+bitexact+accurate_rnd'
|
116 |
+
print(writer_input_dict)
|
117 |
+
print(writer_output_dict)
|
118 |
+
|
119 |
+
if output_video_path is not None:
|
120 |
+
self.writer = skvideo.io.FFmpegWriter(output_video_path, inputdict=writer_input_dict, outputdict=writer_output_dict, verbosity=1)
|
121 |
+
|
122 |
+
def getframes(self):
|
123 |
+
return self.reader.nextFrame()
|
124 |
+
|
125 |
+
def writeframe(self, frame):
|
126 |
+
if frame is None:
|
127 |
+
self.writer.close()
|
128 |
+
else:
|
129 |
+
self.writer.writeFrame(frame)
|
130 |
+
|
131 |
+
|
132 |
+
def save_videos_from_pil(pil_images, path, fps=8):
|
133 |
+
save_fmt = ".mp4"
|
134 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
135 |
+
width, height = pil_images[0].size
|
136 |
+
|
137 |
+
if save_fmt == ".mp4":
|
138 |
+
video_cap = VideoUtils(output_video_path=path, fps=fps)
|
139 |
+
for pil_image in pil_images:
|
140 |
+
image_cv2 = np.array(pil_image)[:,:,[2,1,0]]
|
141 |
+
video_cap.writeframe(image_cv2)
|
142 |
+
video_cap.writeframe(None)
|
143 |
+
|
144 |
+
elif save_fmt == ".gif":
|
145 |
+
pil_images[0].save(
|
146 |
+
fp=path,
|
147 |
+
format="GIF",
|
148 |
+
append_images=pil_images[1:],
|
149 |
+
save_all=True,
|
150 |
+
duration=(1 / fps * 1000),
|
151 |
+
loop=0,
|
152 |
+
optimize=False,
|
153 |
+
lossless=True
|
154 |
+
)
|
155 |
+
else:
|
156 |
+
raise ValueError("Unsupported file type. Use .mp4 or .gif.")
|
157 |
+
|
158 |
+
|
159 |
+
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
|
160 |
+
videos = rearrange(videos, "b c t h w -> t b c h w")
|
161 |
+
height, width = videos.shape[-2:]
|
162 |
+
outputs = []
|
163 |
+
|
164 |
+
for x in videos:
|
165 |
+
x = torchvision.utils.make_grid(x, nrow=n_rows) # (c h w)
|
166 |
+
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) # (h w c)
|
167 |
+
if rescale:
|
168 |
+
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
|
169 |
+
x = (x * 255).numpy().astype(np.uint8)
|
170 |
+
x = Image.fromarray(x)
|
171 |
+
|
172 |
+
outputs.append(x)
|
173 |
+
|
174 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
175 |
+
|
176 |
+
save_videos_from_pil(outputs, path, fps)
|
177 |
+
|
178 |
+
def save_video(video, path: str, rescale=False, n_rows=6, fps=8):
|
179 |
+
outputs = []
|
180 |
+
for x in video:
|
181 |
+
x = Image.fromarray(x)
|
182 |
+
outputs.append(x)
|
183 |
+
|
184 |
+
save_videos_from_pil(outputs, path, fps)
|
hymm_sp/diffusion/__init__.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .pipelines import HunyuanVideoAudioPipeline
|
2 |
+
from .schedulers import FlowMatchDiscreteScheduler
|
3 |
+
|
4 |
+
|
5 |
+
def load_diffusion_pipeline(args, rank, vae, text_encoder, text_encoder_2, model, scheduler=None,
|
6 |
+
device=None, progress_bar_config=None):
|
7 |
+
""" Load the denoising scheduler for inference. """
|
8 |
+
if scheduler is None:
|
9 |
+
scheduler = FlowMatchDiscreteScheduler(shift=args.flow_shift_eval_video, reverse=args.flow_reverse, solver=args.flow_solver, )
|
10 |
+
|
11 |
+
# Only enable progress bar for rank 0
|
12 |
+
progress_bar_config = progress_bar_config or {'leave': True, 'disable': rank != 0}
|
13 |
+
|
14 |
+
pipeline = HunyuanVideoAudioPipeline(vae=vae,
|
15 |
+
text_encoder=text_encoder,
|
16 |
+
text_encoder_2=text_encoder_2,
|
17 |
+
transformer=model,
|
18 |
+
scheduler=scheduler,
|
19 |
+
# safety_checker=None,
|
20 |
+
# feature_extractor=None,
|
21 |
+
# requires_safety_checker=False,
|
22 |
+
progress_bar_config=progress_bar_config,
|
23 |
+
args=args,
|
24 |
+
)
|
25 |
+
if args.cpu_offload: # avoid oom
|
26 |
+
pass
|
27 |
+
else:
|
28 |
+
pipeline = pipeline.to(device)
|
29 |
+
|
30 |
+
return pipeline
|
hymm_sp/diffusion/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (921 Bytes). View file
|
|
hymm_sp/diffusion/pipelines/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .pipeline_hunyuan_video_audio import HunyuanVideoAudioPipeline
|
hymm_sp/diffusion/pipelines/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (319 Bytes). View file
|
|
hymm_sp/diffusion/pipelines/__pycache__/pipeline_hunyuan_video_audio.cpython-310.pyc
ADDED
Binary file (38 kB). View file
|
|
hymm_sp/diffusion/pipelines/pipeline_hunyuan_video_audio.py
ADDED
@@ -0,0 +1,1363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
#
|
16 |
+
# Modified from diffusers==0.29.2
|
17 |
+
#
|
18 |
+
# ==============================================================================
|
19 |
+
import inspect
|
20 |
+
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
from packaging import version
|
24 |
+
from diffusers.utils import BaseOutput
|
25 |
+
from dataclasses import dataclass
|
26 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
27 |
+
from diffusers.configuration_utils import FrozenDict
|
28 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
29 |
+
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin
|
30 |
+
from diffusers.models import AutoencoderKL, ImageProjection
|
31 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
32 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
33 |
+
from diffusers.utils import (
|
34 |
+
USE_PEFT_BACKEND,
|
35 |
+
deprecate,
|
36 |
+
logging,
|
37 |
+
replace_example_docstring,
|
38 |
+
scale_lora_layers,
|
39 |
+
unscale_lora_layers,
|
40 |
+
)
|
41 |
+
from diffusers.utils.torch_utils import randn_tensor
|
42 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
43 |
+
|
44 |
+
from hymm_sp.constants import PRECISION_TO_TYPE
|
45 |
+
from hymm_sp.vae.autoencoder_kl_causal_3d import AutoencoderKLCausal3D
|
46 |
+
from hymm_sp.text_encoder import TextEncoder
|
47 |
+
from einops import rearrange
|
48 |
+
from ...modules import HYVideoDiffusionTransformer
|
49 |
+
|
50 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
51 |
+
|
52 |
+
EXAMPLE_DOC_STRING = """"""
|
53 |
+
|
54 |
+
|
55 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
56 |
+
"""
|
57 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
58 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
59 |
+
"""
|
60 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
61 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
62 |
+
# rescale the results from guidance (fixes overexposure)
|
63 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
64 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
65 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
66 |
+
return noise_cfg
|
67 |
+
|
68 |
+
|
69 |
+
def retrieve_timesteps(
|
70 |
+
scheduler,
|
71 |
+
num_inference_steps: Optional[int] = None,
|
72 |
+
device: Optional[Union[str, torch.device]] = None,
|
73 |
+
timesteps: Optional[List[int]] = None,
|
74 |
+
sigmas: Optional[List[float]] = None,
|
75 |
+
**kwargs,
|
76 |
+
):
|
77 |
+
"""
|
78 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
79 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
80 |
+
|
81 |
+
Args:
|
82 |
+
scheduler (`SchedulerMixin`):
|
83 |
+
The scheduler to get timesteps from.
|
84 |
+
num_inference_steps (`int`):
|
85 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
86 |
+
must be `None`.
|
87 |
+
device (`str` or `torch.device`, *optional*):
|
88 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
89 |
+
timesteps (`List[int]`, *optional*):
|
90 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
91 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
92 |
+
sigmas (`List[float]`, *optional*):
|
93 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
94 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
95 |
+
|
96 |
+
Returns:
|
97 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
98 |
+
second element is the number of inference steps.
|
99 |
+
"""
|
100 |
+
if timesteps is not None and sigmas is not None:
|
101 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
102 |
+
if timesteps is not None:
|
103 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
104 |
+
if not accepts_timesteps:
|
105 |
+
raise ValueError(
|
106 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
107 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
108 |
+
)
|
109 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
110 |
+
timesteps = scheduler.timesteps
|
111 |
+
num_inference_steps = len(timesteps)
|
112 |
+
elif sigmas is not None:
|
113 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
114 |
+
if not accept_sigmas:
|
115 |
+
raise ValueError(
|
116 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
117 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
118 |
+
)
|
119 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
120 |
+
timesteps = scheduler.timesteps
|
121 |
+
num_inference_steps = len(timesteps)
|
122 |
+
else:
|
123 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
124 |
+
timesteps = scheduler.timesteps
|
125 |
+
return timesteps, num_inference_steps
|
126 |
+
|
127 |
+
@dataclass
|
128 |
+
class HunyuanVideoPipelineOutput(BaseOutput):
|
129 |
+
videos: Union[torch.Tensor, np.ndarray]
|
130 |
+
|
131 |
+
|
132 |
+
class HunyuanVideoAudioPipeline(DiffusionPipeline):
|
133 |
+
r"""
|
134 |
+
Pipeline for text-to-video generation using HunyuanVideo.
|
135 |
+
|
136 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
137 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
138 |
+
|
139 |
+
Args:
|
140 |
+
vae ([`AutoencoderKL`]):
|
141 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
142 |
+
text_encoder ([`TextEncoder`]):
|
143 |
+
Frozen text-encoder.
|
144 |
+
text_encoder_2 ([`TextEncoder`]):
|
145 |
+
Frozen text-encoder_2.
|
146 |
+
transformer ([`HYVideoDiffusionTransformer`]):
|
147 |
+
A `HYVideoDiffusionTransformer` to denoise the encoded video latents.
|
148 |
+
scheduler ([`SchedulerMixin`]):
|
149 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
|
150 |
+
"""
|
151 |
+
|
152 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
|
153 |
+
_optional_components = ["text_encoder_2"]
|
154 |
+
_exclude_from_cpu_offload = ["transformer"]
|
155 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
156 |
+
|
157 |
+
def __init__(
|
158 |
+
self,
|
159 |
+
vae: AutoencoderKL,
|
160 |
+
text_encoder: TextEncoder,
|
161 |
+
transformer: HYVideoDiffusionTransformer,
|
162 |
+
scheduler: KarrasDiffusionSchedulers,
|
163 |
+
text_encoder_2: Optional[TextEncoder] = None,
|
164 |
+
progress_bar_config: Dict[str, Any] = None,
|
165 |
+
args=None,
|
166 |
+
):
|
167 |
+
super().__init__()
|
168 |
+
|
169 |
+
# ==========================================================================================
|
170 |
+
if progress_bar_config is None:
|
171 |
+
progress_bar_config = {}
|
172 |
+
if not hasattr(self, '_progress_bar_config'):
|
173 |
+
self._progress_bar_config = {}
|
174 |
+
self._progress_bar_config.update(progress_bar_config)
|
175 |
+
|
176 |
+
self.args = args
|
177 |
+
# ==========================================================================================
|
178 |
+
|
179 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
180 |
+
deprecation_message = (
|
181 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
182 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
183 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
184 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
185 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
186 |
+
" file"
|
187 |
+
)
|
188 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
189 |
+
new_config = dict(scheduler.config)
|
190 |
+
new_config["steps_offset"] = 1
|
191 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
192 |
+
|
193 |
+
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
|
194 |
+
deprecation_message = (
|
195 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
196 |
+
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
197 |
+
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
198 |
+
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
199 |
+
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
200 |
+
)
|
201 |
+
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
|
202 |
+
new_config = dict(scheduler.config)
|
203 |
+
new_config["clip_sample"] = False
|
204 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
205 |
+
|
206 |
+
self.register_modules(
|
207 |
+
vae=vae,
|
208 |
+
text_encoder=text_encoder,
|
209 |
+
transformer=transformer,
|
210 |
+
scheduler=scheduler,
|
211 |
+
text_encoder_2=text_encoder_2
|
212 |
+
)
|
213 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
214 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
215 |
+
|
216 |
+
def encode_prompt(
|
217 |
+
self,
|
218 |
+
prompt,
|
219 |
+
name,
|
220 |
+
device,
|
221 |
+
num_videos_per_prompt,
|
222 |
+
do_classifier_free_guidance,
|
223 |
+
negative_prompt=None,
|
224 |
+
pixel_value_llava: Optional[torch.Tensor] = None,
|
225 |
+
uncond_pixel_value_llava: Optional[torch.Tensor] = None,
|
226 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
227 |
+
attention_mask: Optional[torch.Tensor] = None,
|
228 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
229 |
+
negative_attention_mask: Optional[torch.Tensor] = None,
|
230 |
+
lora_scale: Optional[float] = None,
|
231 |
+
clip_skip: Optional[int] = None,
|
232 |
+
text_encoder: Optional[TextEncoder] = None,
|
233 |
+
data_type: Optional[str] = "image",
|
234 |
+
):
|
235 |
+
r"""
|
236 |
+
Encodes the prompt into text encoder hidden states.
|
237 |
+
|
238 |
+
Args:
|
239 |
+
prompt (`str` or `List[str]`, *optional*):
|
240 |
+
prompt to be encoded
|
241 |
+
device: (`torch.device`):
|
242 |
+
torch device
|
243 |
+
num_videos_per_prompt (`int`):
|
244 |
+
number of images that should be generated per prompt
|
245 |
+
do_classifier_free_guidance (`bool`):
|
246 |
+
whether to use classifier free guidance or not
|
247 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
248 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
249 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
250 |
+
less than `1`).
|
251 |
+
pixel_value_llava (`torch.Tensor`, *optional*):
|
252 |
+
The image tensor for llava.
|
253 |
+
uncond_pixel_value_llava (`torch.Tensor`, *optional*):
|
254 |
+
The image tensor for llava. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
255 |
+
less than `1`).
|
256 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
257 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
258 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
259 |
+
attention_mask (`torch.Tensor`, *optional*):
|
260 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
261 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
262 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
263 |
+
argument.
|
264 |
+
negative_attention_mask (`torch.Tensor`, *optional*):
|
265 |
+
lora_scale (`float`, *optional*):
|
266 |
+
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
267 |
+
clip_skip (`int`, *optional*):
|
268 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
269 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
270 |
+
text_encoder (TextEncoder, *optional*):
|
271 |
+
"""
|
272 |
+
if text_encoder is None:
|
273 |
+
text_encoder = self.text_encoder
|
274 |
+
|
275 |
+
# set lora scale so that monkey patched LoRA
|
276 |
+
# function of text encoder can correctly access it
|
277 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
278 |
+
self._lora_scale = lora_scale
|
279 |
+
|
280 |
+
# dynamically adjust the LoRA scale
|
281 |
+
if not USE_PEFT_BACKEND:
|
282 |
+
adjust_lora_scale_text_encoder(text_encoder.model, lora_scale)
|
283 |
+
else:
|
284 |
+
scale_lora_layers(text_encoder.model, lora_scale)
|
285 |
+
|
286 |
+
if prompt is not None and isinstance(prompt, str):
|
287 |
+
batch_size = 1
|
288 |
+
elif prompt is not None and isinstance(prompt, list):
|
289 |
+
batch_size = len(prompt)
|
290 |
+
else:
|
291 |
+
batch_size = prompt_embeds.shape[0]
|
292 |
+
|
293 |
+
if prompt_embeds is None:
|
294 |
+
# textual inversion: process multi-vector tokens if necessary
|
295 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
296 |
+
prompt = self.maybe_convert_prompt(prompt, text_encoder.tokenizer)
|
297 |
+
text_inputs = text_encoder.text2tokens(prompt, data_type=data_type, name=name)
|
298 |
+
|
299 |
+
if pixel_value_llava is not None:
|
300 |
+
text_inputs['pixel_value_llava'] = pixel_value_llava
|
301 |
+
text_inputs['attention_mask'] = torch.cat([text_inputs['attention_mask'], torch.ones((1, 575 * len(pixel_value_llava))).to(text_inputs['attention_mask'])], dim=1)
|
302 |
+
|
303 |
+
if clip_skip is None:
|
304 |
+
prompt_outputs = text_encoder.encode(text_inputs, data_type=data_type)
|
305 |
+
prompt_embeds = prompt_outputs.hidden_state
|
306 |
+
else:
|
307 |
+
prompt_outputs = text_encoder.encode(text_inputs, output_hidden_states=True, data_type=data_type)
|
308 |
+
# Access the `hidden_states` first, that contains a tuple of
|
309 |
+
# all the hidden states from the encoder layers. Then index into
|
310 |
+
# the tuple to access the hidden states from the desired layer.
|
311 |
+
prompt_embeds = prompt_outputs.hidden_states_list[-(clip_skip + 1)]
|
312 |
+
# We also need to apply the final LayerNorm here to not mess with the
|
313 |
+
# representations. The `last_hidden_states` that we typically use for
|
314 |
+
# obtaining the final prompt representations passes through the LayerNorm
|
315 |
+
# layer.
|
316 |
+
prompt_embeds = text_encoder.model.text_model.final_layer_norm(prompt_embeds)
|
317 |
+
|
318 |
+
attention_mask = prompt_outputs.attention_mask
|
319 |
+
if attention_mask is not None:
|
320 |
+
attention_mask = attention_mask.to(device)
|
321 |
+
bs_embed, seq_len = attention_mask.shape
|
322 |
+
attention_mask = attention_mask.repeat(1, num_videos_per_prompt)
|
323 |
+
attention_mask = attention_mask.view(bs_embed * num_videos_per_prompt, seq_len)
|
324 |
+
|
325 |
+
if text_encoder is not None:
|
326 |
+
prompt_embeds_dtype = text_encoder.dtype
|
327 |
+
elif self.transformer is not None:
|
328 |
+
prompt_embeds_dtype = self.transformer.dtype
|
329 |
+
else:
|
330 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
331 |
+
|
332 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
333 |
+
|
334 |
+
if prompt_embeds.ndim == 2:
|
335 |
+
bs_embed, _ = prompt_embeds.shape
|
336 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
337 |
+
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt)
|
338 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, -1)
|
339 |
+
else:
|
340 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
341 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
342 |
+
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
343 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1)
|
344 |
+
|
345 |
+
# get unconditional embeddings for classifier free guidance
|
346 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
347 |
+
uncond_tokens: List[str]
|
348 |
+
if negative_prompt is None:
|
349 |
+
uncond_tokens = [""] * batch_size
|
350 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
351 |
+
raise TypeError(
|
352 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
353 |
+
f" {type(prompt)}."
|
354 |
+
)
|
355 |
+
elif isinstance(negative_prompt, str):
|
356 |
+
uncond_tokens = [negative_prompt]
|
357 |
+
elif batch_size != len(negative_prompt):
|
358 |
+
raise ValueError(
|
359 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
360 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
361 |
+
" the batch size of `prompt`."
|
362 |
+
)
|
363 |
+
else:
|
364 |
+
uncond_tokens = negative_prompt
|
365 |
+
|
366 |
+
# textual inversion: process multi-vector tokens if necessary
|
367 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
368 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, text_encoder.tokenizer)
|
369 |
+
uncond_input = text_encoder.text2tokens(uncond_tokens, data_type=data_type)
|
370 |
+
if uncond_pixel_value_llava is not None:
|
371 |
+
uncond_input['pixel_value_llava'] = uncond_pixel_value_llava
|
372 |
+
uncond_input['attention_mask'] = torch.cat([uncond_input['attention_mask'], torch.ones((1, 575 * len(uncond_pixel_value_llava))).to(uncond_input['attention_mask'])], dim=1)
|
373 |
+
|
374 |
+
negative_prompt_outputs = text_encoder.encode(uncond_input, data_type=data_type)
|
375 |
+
negative_prompt_embeds = negative_prompt_outputs.hidden_state
|
376 |
+
|
377 |
+
negative_attention_mask = negative_prompt_outputs.attention_mask
|
378 |
+
if negative_attention_mask is not None:
|
379 |
+
negative_attention_mask = negative_attention_mask.to(device)
|
380 |
+
_, seq_len = negative_attention_mask.shape
|
381 |
+
negative_attention_mask = negative_attention_mask.repeat(1, num_videos_per_prompt)
|
382 |
+
negative_attention_mask = negative_attention_mask.view(batch_size * num_videos_per_prompt, seq_len)
|
383 |
+
|
384 |
+
if do_classifier_free_guidance:
|
385 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
386 |
+
seq_len = negative_prompt_embeds.shape[1]
|
387 |
+
|
388 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
389 |
+
|
390 |
+
if negative_prompt_embeds.ndim == 2:
|
391 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_videos_per_prompt)
|
392 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_videos_per_prompt, -1)
|
393 |
+
else:
|
394 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
395 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
396 |
+
|
397 |
+
if text_encoder is not None:
|
398 |
+
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
|
399 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
400 |
+
unscale_lora_layers(text_encoder.model, lora_scale)
|
401 |
+
|
402 |
+
return prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask
|
403 |
+
|
404 |
+
def encode_prompt_audio_text_base(
|
405 |
+
self,
|
406 |
+
prompt,
|
407 |
+
uncond_prompt,
|
408 |
+
pixel_value_llava,
|
409 |
+
uncond_pixel_value_llava,
|
410 |
+
device,
|
411 |
+
num_images_per_prompt,
|
412 |
+
do_classifier_free_guidance,
|
413 |
+
negative_prompt=None,
|
414 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
415 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
416 |
+
lora_scale: Optional[float] = None,
|
417 |
+
clip_skip: Optional[int] = None,
|
418 |
+
text_encoder: Optional[TextEncoder] = None,
|
419 |
+
data_type: Optional[str] = "image",
|
420 |
+
):
|
421 |
+
if text_encoder is None:
|
422 |
+
text_encoder = self.text_encoder
|
423 |
+
|
424 |
+
# set lora scale so that monkey patched LoRA
|
425 |
+
# function of text encoder can correctly access it
|
426 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
427 |
+
self._lora_scale = lora_scale
|
428 |
+
|
429 |
+
# dynamically adjust the LoRA scale
|
430 |
+
if not USE_PEFT_BACKEND:
|
431 |
+
adjust_lora_scale_text_encoder(text_encoder.model, lora_scale)
|
432 |
+
else:
|
433 |
+
scale_lora_layers(text_encoder.model, lora_scale)
|
434 |
+
|
435 |
+
if prompt is not None and isinstance(prompt, str):
|
436 |
+
batch_size = 1
|
437 |
+
elif prompt is not None and isinstance(prompt, list):
|
438 |
+
batch_size = len(prompt)
|
439 |
+
else:
|
440 |
+
batch_size = prompt_embeds.shape[0]
|
441 |
+
|
442 |
+
prompt_embeds = None
|
443 |
+
|
444 |
+
if prompt_embeds is None:
|
445 |
+
# textual inversion: process multi-vector tokens if necessary
|
446 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
447 |
+
prompt = self.maybe_convert_prompt(prompt, text_encoder.tokenizer)
|
448 |
+
text_inputs = text_encoder.text2tokens(prompt, data_type=data_type) # data_type: video, text_inputs: {'input_ids', 'attention_mask'}
|
449 |
+
|
450 |
+
text_keys = ['input_ids', 'attention_mask']
|
451 |
+
|
452 |
+
if pixel_value_llava is not None:
|
453 |
+
text_inputs['pixel_value_llava'] = pixel_value_llava
|
454 |
+
text_inputs['attention_mask'] = torch.cat([text_inputs['attention_mask'], torch.ones((1, 575)).to(text_inputs['attention_mask'])], dim=1)
|
455 |
+
|
456 |
+
|
457 |
+
if clip_skip is None:
|
458 |
+
prompt_outputs = text_encoder.encode(text_inputs, data_type=data_type)
|
459 |
+
prompt_embeds = prompt_outputs.hidden_state
|
460 |
+
else:
|
461 |
+
prompt_outputs = text_encoder.encode(text_inputs, output_hidden_states=True, data_type=data_type)
|
462 |
+
# Access the `hidden_states` first, that contains a tuple of
|
463 |
+
# all the hidden states from the encoder layers. Then index into
|
464 |
+
# the tuple to access the hidden states from the desired layer.
|
465 |
+
prompt_embeds = prompt_outputs.hidden_states_list[-(clip_skip + 1)]
|
466 |
+
# We also need to apply the final LayerNorm here to not mess with the
|
467 |
+
# representations. The `last_hidden_states` that we typically use for
|
468 |
+
# obtaining the final prompt representations passes through the LayerNorm
|
469 |
+
# layer.
|
470 |
+
prompt_embeds = text_encoder.model.text_model.final_layer_norm(prompt_embeds)
|
471 |
+
|
472 |
+
attention_mask = prompt_outputs.attention_mask
|
473 |
+
if attention_mask is not None:
|
474 |
+
attention_mask = attention_mask.to(device)
|
475 |
+
bs_embed, seq_len = attention_mask.shape
|
476 |
+
attention_mask = attention_mask.repeat(1, num_images_per_prompt)
|
477 |
+
attention_mask = attention_mask.view(bs_embed * num_images_per_prompt, seq_len)
|
478 |
+
|
479 |
+
if text_encoder is not None:
|
480 |
+
prompt_embeds_dtype = text_encoder.dtype
|
481 |
+
elif self.unet is not None:
|
482 |
+
prompt_embeds_dtype = self.unet.dtype
|
483 |
+
else:
|
484 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
485 |
+
|
486 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
487 |
+
|
488 |
+
if prompt_embeds.ndim == 2:
|
489 |
+
bs_embed, _ = prompt_embeds.shape
|
490 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
491 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
|
492 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, -1)
|
493 |
+
else:
|
494 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
495 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
496 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
497 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
498 |
+
|
499 |
+
# get unconditional embeddings for classifier free guidance
|
500 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
501 |
+
uncond_tokens: List[str]
|
502 |
+
if negative_prompt is None:
|
503 |
+
uncond_tokens = [""] * batch_size
|
504 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
505 |
+
raise TypeError(
|
506 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
507 |
+
f" {type(prompt)}."
|
508 |
+
)
|
509 |
+
elif isinstance(negative_prompt, str):
|
510 |
+
uncond_tokens = [negative_prompt]
|
511 |
+
elif batch_size != len(negative_prompt):
|
512 |
+
raise ValueError(
|
513 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
514 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
515 |
+
" the batch size of `prompt`."
|
516 |
+
)
|
517 |
+
else:
|
518 |
+
uncond_tokens = negative_prompt
|
519 |
+
|
520 |
+
# textual inversion: process multi-vector tokens if necessary
|
521 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
522 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, text_encoder.tokenizer)
|
523 |
+
# max_length = prompt_embeds.shape[1]
|
524 |
+
uncond_input = text_encoder.text2tokens(uncond_tokens, data_type=data_type)
|
525 |
+
|
526 |
+
# if hasattr(text_encoder.model.config, "use_attention_mask") and text_encoder.model.config.use_attention_mask:
|
527 |
+
# attention_mask = uncond_input.attention_mask.to(device)
|
528 |
+
# else:
|
529 |
+
# attention_mask = None
|
530 |
+
if uncond_pixel_value_llava is not None:
|
531 |
+
uncond_input['pixel_value_llava'] = uncond_pixel_value_llava
|
532 |
+
uncond_input['attention_mask'] = torch.cat([uncond_input['attention_mask'], torch.ones((1, 575)).to(uncond_input['attention_mask'])], dim=1)
|
533 |
+
|
534 |
+
negative_prompt_outputs = text_encoder.encode(uncond_input, data_type=data_type)
|
535 |
+
negative_prompt_embeds = negative_prompt_outputs.hidden_state
|
536 |
+
|
537 |
+
negative_attention_mask = negative_prompt_outputs.attention_mask
|
538 |
+
if negative_attention_mask is not None:
|
539 |
+
negative_attention_mask = negative_attention_mask.to(device)
|
540 |
+
_, seq_len = negative_attention_mask.shape
|
541 |
+
negative_attention_mask = negative_attention_mask.repeat(1, num_images_per_prompt)
|
542 |
+
negative_attention_mask = negative_attention_mask.view(batch_size * num_images_per_prompt, seq_len)
|
543 |
+
|
544 |
+
if do_classifier_free_guidance:
|
545 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
546 |
+
seq_len = negative_prompt_embeds.shape[1]
|
547 |
+
|
548 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
549 |
+
|
550 |
+
if negative_prompt_embeds.ndim == 2:
|
551 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt)
|
552 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
553 |
+
else:
|
554 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
555 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
556 |
+
|
557 |
+
if text_encoder is not None:
|
558 |
+
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
|
559 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
560 |
+
unscale_lora_layers(text_encoder.model, lora_scale)
|
561 |
+
|
562 |
+
return prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask
|
563 |
+
|
564 |
+
def decode_latents(self, latents, enable_tiling=True):
|
565 |
+
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
|
566 |
+
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
|
567 |
+
|
568 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
569 |
+
if enable_tiling:
|
570 |
+
self.vae.enable_tiling()
|
571 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
572 |
+
self.vae.disable_tiling()
|
573 |
+
else:
|
574 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
575 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
576 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
577 |
+
if image.ndim==4: image = image.cpu().permute(0, 2, 3, 1).float()
|
578 |
+
else: image = image.cpu().float()
|
579 |
+
return image
|
580 |
+
|
581 |
+
def prepare_extra_func_kwargs(self, func, kwargs):
|
582 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
583 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
584 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
585 |
+
# and should be between [0, 1]
|
586 |
+
extra_step_kwargs = {}
|
587 |
+
|
588 |
+
for k, v in kwargs.items():
|
589 |
+
accepts = k in set(inspect.signature(func).parameters.keys())
|
590 |
+
if accepts:
|
591 |
+
extra_step_kwargs[k] = v
|
592 |
+
return extra_step_kwargs
|
593 |
+
|
594 |
+
def check_inputs(
|
595 |
+
self,
|
596 |
+
prompt,
|
597 |
+
height,
|
598 |
+
width,
|
599 |
+
frame,
|
600 |
+
callback_steps,
|
601 |
+
pixel_value_llava=None,
|
602 |
+
uncond_pixel_value_llava=None,
|
603 |
+
negative_prompt=None,
|
604 |
+
prompt_embeds=None,
|
605 |
+
negative_prompt_embeds=None,
|
606 |
+
callback_on_step_end_tensor_inputs=None,
|
607 |
+
vae_ver='88-4c-sd'
|
608 |
+
):
|
609 |
+
if height % 8 != 0 or width % 8 != 0:
|
610 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
611 |
+
|
612 |
+
if frame is not None:
|
613 |
+
if '884' in vae_ver:
|
614 |
+
if frame!=1 and (frame-1)%4!=0:
|
615 |
+
raise ValueError(f'`frame` has to be 1 or a multiple of 4 but is {frame}.')
|
616 |
+
elif '888' in vae_ver:
|
617 |
+
if frame!=1 and (frame-1)%8!=0:
|
618 |
+
raise ValueError(f'`frame` has to be 1 or a multiple of 8 but is {frame}.')
|
619 |
+
|
620 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
621 |
+
raise ValueError(
|
622 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
623 |
+
f" {type(callback_steps)}."
|
624 |
+
)
|
625 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
626 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
627 |
+
):
|
628 |
+
raise ValueError(
|
629 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
630 |
+
)
|
631 |
+
|
632 |
+
if prompt is not None and prompt_embeds is not None:
|
633 |
+
raise ValueError(
|
634 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
635 |
+
" only forward one of the two."
|
636 |
+
)
|
637 |
+
elif prompt is None and prompt_embeds is None:
|
638 |
+
raise ValueError(
|
639 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
640 |
+
)
|
641 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
642 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
643 |
+
|
644 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
645 |
+
raise ValueError(
|
646 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
647 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
648 |
+
)
|
649 |
+
|
650 |
+
if pixel_value_llava is not None and uncond_pixel_value_llava is not None:
|
651 |
+
if len(pixel_value_llava) != len(uncond_pixel_value_llava):
|
652 |
+
raise ValueError(
|
653 |
+
"`pixel_value_llava` and `uncond_pixel_value_llava` must have the same length when passed directly, but"
|
654 |
+
f" got: `pixel_value_llava` {len(pixel_value_llava)} != `uncond_pixel_value_llava`"
|
655 |
+
f" {len(uncond_pixel_value_llava)}."
|
656 |
+
)
|
657 |
+
|
658 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
659 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
660 |
+
raise ValueError(
|
661 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
662 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
663 |
+
f" {negative_prompt_embeds.shape}."
|
664 |
+
)
|
665 |
+
|
666 |
+
def get_timesteps(self, num_inference_steps, strength, device):
|
667 |
+
# get the original timestep using init_timestep
|
668 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
669 |
+
|
670 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
671 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
672 |
+
if hasattr(self.scheduler, "set_begin_index"):
|
673 |
+
self.scheduler.set_begin_index(t_start * self.scheduler.order)
|
674 |
+
|
675 |
+
return timesteps.to(device), num_inference_steps - t_start
|
676 |
+
|
677 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, frame, dtype, device, generator, latents=None, ref_latents=None, timestep=None):
|
678 |
+
shape = (
|
679 |
+
batch_size,
|
680 |
+
num_channels_latents,
|
681 |
+
frame,
|
682 |
+
int(height) // self.vae_scale_factor,
|
683 |
+
int(width) // self.vae_scale_factor,
|
684 |
+
)
|
685 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
686 |
+
raise ValueError(
|
687 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
688 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
689 |
+
)
|
690 |
+
|
691 |
+
if latents is None:
|
692 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
693 |
+
else:
|
694 |
+
latents = latents.to(device)
|
695 |
+
|
696 |
+
|
697 |
+
if timestep is not None:
|
698 |
+
init_latents = ref_latents.clone().repeat(1,1,frame,1,1).to(device).to(dtype)
|
699 |
+
latents = latents
|
700 |
+
|
701 |
+
# Check existence to make it compatible with FlowMatchEulerDiscreteScheduler
|
702 |
+
if hasattr(self.scheduler, "init_noise_sigma"):
|
703 |
+
latents = latents * self.scheduler.init_noise_sigma
|
704 |
+
|
705 |
+
return latents
|
706 |
+
|
707 |
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
708 |
+
def get_guidance_scale_embedding(
|
709 |
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
710 |
+
) -> torch.Tensor:
|
711 |
+
"""
|
712 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
713 |
+
|
714 |
+
Args:
|
715 |
+
w (`torch.Tensor`):
|
716 |
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
717 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
718 |
+
Dimension of the embeddings to generate.
|
719 |
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
720 |
+
Data type of the generated embeddings.
|
721 |
+
|
722 |
+
Returns:
|
723 |
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
724 |
+
"""
|
725 |
+
assert len(w.shape) == 1
|
726 |
+
w = w * 1000.0
|
727 |
+
|
728 |
+
half_dim = embedding_dim // 2
|
729 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
730 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
731 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
732 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
733 |
+
if embedding_dim % 2 == 1: # zero pad
|
734 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
735 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
736 |
+
return emb
|
737 |
+
|
738 |
+
@property
|
739 |
+
def guidance_scale(self):
|
740 |
+
return self._guidance_scale
|
741 |
+
|
742 |
+
@property
|
743 |
+
def guidance_rescale(self):
|
744 |
+
return self._guidance_rescale
|
745 |
+
|
746 |
+
@property
|
747 |
+
def clip_skip(self):
|
748 |
+
return self._clip_skip
|
749 |
+
|
750 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
751 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
752 |
+
# corresponds to doing no classifier free guidance.
|
753 |
+
@property
|
754 |
+
def do_classifier_free_guidance(self):
|
755 |
+
# return self._guidance_scale > 1 and self.transformer.config.time_cond_proj_dim is None
|
756 |
+
return self._guidance_scale > 1
|
757 |
+
|
758 |
+
@property
|
759 |
+
def cross_attention_kwargs(self):
|
760 |
+
return self._cross_attention_kwargs
|
761 |
+
|
762 |
+
@property
|
763 |
+
def num_timesteps(self):
|
764 |
+
return self._num_timesteps
|
765 |
+
|
766 |
+
@property
|
767 |
+
def interrupt(self):
|
768 |
+
return self._interrupt
|
769 |
+
|
770 |
+
@torch.no_grad()
|
771 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
772 |
+
def __call__(
|
773 |
+
self,
|
774 |
+
prompt: Union[str, List[str]],
|
775 |
+
|
776 |
+
ref_latents: Union[torch.Tensor], # [1, 16, 1, h//8, w//8]
|
777 |
+
uncond_ref_latents: Union[torch.Tensor],
|
778 |
+
pixel_value_llava: Union[torch.Tensor], # [1, 3, 336, 336]
|
779 |
+
uncond_pixel_value_llava: Union[torch.Tensor],
|
780 |
+
face_masks: Union[torch.Tensor], # [b f h w]
|
781 |
+
audio_prompts: Union[torch.Tensor],
|
782 |
+
uncond_audio_prompts: Union[torch.Tensor],
|
783 |
+
motion_exp: Union[torch.Tensor],
|
784 |
+
motion_pose: Union[torch.Tensor],
|
785 |
+
fps: Union[torch.Tensor],
|
786 |
+
|
787 |
+
height: int,
|
788 |
+
width: int,
|
789 |
+
frame: int,
|
790 |
+
data_type: str = "video",
|
791 |
+
num_inference_steps: int = 50,
|
792 |
+
timesteps: List[int] = None,
|
793 |
+
sigmas: List[float] = None,
|
794 |
+
guidance_scale: float = 7.5,
|
795 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
796 |
+
num_videos_per_prompt: Optional[int] = 1,
|
797 |
+
eta: float = 0.0,
|
798 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
799 |
+
latents: Optional[torch.Tensor] = None,
|
800 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
801 |
+
attention_mask: Optional[torch.Tensor] = None,
|
802 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
803 |
+
negative_attention_mask: Optional[torch.Tensor] = None,
|
804 |
+
output_type: Optional[str] = "pil",
|
805 |
+
return_dict: bool = True,
|
806 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
807 |
+
guidance_rescale: float = 0.0,
|
808 |
+
clip_skip: Optional[int] = None,
|
809 |
+
callback_on_step_end: Optional[
|
810 |
+
Union[
|
811 |
+
Callable[[int, int, Dict], None],
|
812 |
+
PipelineCallback,
|
813 |
+
MultiPipelineCallbacks,
|
814 |
+
]
|
815 |
+
] = None,
|
816 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
817 |
+
freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None,
|
818 |
+
vae_ver: str = "88-4c-sd",
|
819 |
+
enable_tiling: bool = False,
|
820 |
+
n_tokens: Optional[int] = None,
|
821 |
+
embedded_guidance_scale: Optional[float] = None,
|
822 |
+
**kwargs,
|
823 |
+
):
|
824 |
+
r"""
|
825 |
+
The call function to the pipeline for generation.
|
826 |
+
|
827 |
+
Args:
|
828 |
+
prompt (`str` or `List[str]`):
|
829 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
830 |
+
height (`int`):
|
831 |
+
The height in pixels of the generated image.
|
832 |
+
width (`int`):
|
833 |
+
The width in pixels of the generated image.
|
834 |
+
video_length (`int`):
|
835 |
+
The number of frames in the generated video.
|
836 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
837 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
838 |
+
expense of slower inference.
|
839 |
+
timesteps (`List[int]`, *optional*):
|
840 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
841 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
842 |
+
passed will be used. Must be in descending order.
|
843 |
+
sigmas (`List[float]`, *optional*):
|
844 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
845 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
846 |
+
will be used.
|
847 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
848 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
849 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
850 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
851 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
852 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
853 |
+
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
854 |
+
The number of images to generate per prompt.
|
855 |
+
eta (`float`, *optional*, defaults to 0.0):
|
856 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
857 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
858 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
859 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
860 |
+
generation deterministic.
|
861 |
+
latents (`torch.Tensor`, *optional*):
|
862 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
863 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
864 |
+
tensor is generated by sampling using the supplied random `generator`.
|
865 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
866 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
867 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
868 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
869 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
870 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
871 |
+
|
872 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
873 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
874 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
875 |
+
Whether or not to return a [`HunyuanVideoPipelineOutput`] instead of a
|
876 |
+
plain tuple.
|
877 |
+
cross_attention_kwargs (`dict`, *optional*):
|
878 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
879 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
880 |
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
881 |
+
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
882 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
|
883 |
+
using zero terminal SNR.
|
884 |
+
clip_skip (`int`, *optional*):
|
885 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
886 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
887 |
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
888 |
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
889 |
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
890 |
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
891 |
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
892 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
893 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
894 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
895 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
896 |
+
|
897 |
+
Examples:
|
898 |
+
|
899 |
+
Returns:
|
900 |
+
[`~HunyuanVideoPipelineOutput`] or `tuple`:
|
901 |
+
If `return_dict` is `True`, [`HunyuanVideoPipelineOutput`] is returned,
|
902 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
903 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
904 |
+
"not-safe-for-work" (nsfw) content.
|
905 |
+
"""
|
906 |
+
callback = kwargs.pop("callback", None)
|
907 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
908 |
+
if callback is not None:
|
909 |
+
deprecate(
|
910 |
+
"callback",
|
911 |
+
"1.0.0",
|
912 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
913 |
+
)
|
914 |
+
if callback_steps is not None:
|
915 |
+
deprecate(
|
916 |
+
"callback_steps",
|
917 |
+
"1.0.0",
|
918 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
919 |
+
)
|
920 |
+
|
921 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
922 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
923 |
+
|
924 |
+
cpu_offload = kwargs.get("cpu_offload", 0)
|
925 |
+
|
926 |
+
# 0. Default height and width to transformer
|
927 |
+
# height = height or self.transformer.config.sample_size * self.vae_scale_factor
|
928 |
+
# width = width or self.transformer.config.sample_size * self.vae_scale_factor
|
929 |
+
# to deal with lora scaling and other possible forward hooks
|
930 |
+
|
931 |
+
# 1. Check inputs. Raise error if not correct
|
932 |
+
self.check_inputs(
|
933 |
+
prompt,
|
934 |
+
height,
|
935 |
+
width,
|
936 |
+
frame,
|
937 |
+
callback_steps,
|
938 |
+
pixel_value_llava,
|
939 |
+
uncond_pixel_value_llava,
|
940 |
+
negative_prompt,
|
941 |
+
prompt_embeds,
|
942 |
+
negative_prompt_embeds,
|
943 |
+
callback_on_step_end_tensor_inputs,
|
944 |
+
vae_ver=vae_ver
|
945 |
+
)
|
946 |
+
|
947 |
+
self._guidance_scale = guidance_scale
|
948 |
+
self.start_cfg_scale = guidance_scale
|
949 |
+
self._guidance_rescale = guidance_rescale
|
950 |
+
self._clip_skip = clip_skip
|
951 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
952 |
+
self._interrupt = False
|
953 |
+
|
954 |
+
# 2. Define call parameters
|
955 |
+
if prompt is not None and isinstance(prompt, str):
|
956 |
+
batch_size = 1
|
957 |
+
elif prompt is not None and isinstance(prompt, list):
|
958 |
+
batch_size = len(prompt)
|
959 |
+
else:
|
960 |
+
batch_size = prompt_embeds.shape[0]
|
961 |
+
|
962 |
+
device = self._execution_device
|
963 |
+
|
964 |
+
# 3. Encode input prompt
|
965 |
+
lora_scale = (
|
966 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
967 |
+
)
|
968 |
+
|
969 |
+
|
970 |
+
# ========== Encode text prompt (image prompt) ==========
|
971 |
+
prompt_embeds, negative_prompt_embeds, prompt_mask, negative_prompt_mask = \
|
972 |
+
self.encode_prompt_audio_text_base(
|
973 |
+
prompt=prompt,
|
974 |
+
uncond_prompt=negative_prompt,
|
975 |
+
pixel_value_llava=pixel_value_llava,
|
976 |
+
uncond_pixel_value_llava=uncond_pixel_value_llava,
|
977 |
+
device=device,
|
978 |
+
num_images_per_prompt=num_videos_per_prompt,
|
979 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
980 |
+
negative_prompt=negative_prompt,
|
981 |
+
prompt_embeds=prompt_embeds,
|
982 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
983 |
+
lora_scale=lora_scale,
|
984 |
+
clip_skip=self.clip_skip,
|
985 |
+
text_encoder=self.text_encoder,
|
986 |
+
data_type=data_type,
|
987 |
+
# **kwargs
|
988 |
+
)
|
989 |
+
if self.text_encoder_2 is not None:
|
990 |
+
prompt_embeds_2, negative_prompt_embeds_2, prompt_mask_2, negative_prompt_mask_2 = \
|
991 |
+
self.encode_prompt_audio_text_base(
|
992 |
+
prompt=prompt,
|
993 |
+
uncond_prompt=negative_prompt,
|
994 |
+
pixel_value_llava=None,
|
995 |
+
uncond_pixel_value_llava=None,
|
996 |
+
device=device,
|
997 |
+
num_images_per_prompt=num_videos_per_prompt,
|
998 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
999 |
+
negative_prompt=negative_prompt,
|
1000 |
+
prompt_embeds=None,
|
1001 |
+
negative_prompt_embeds=None,
|
1002 |
+
lora_scale=lora_scale,
|
1003 |
+
clip_skip=self.clip_skip,
|
1004 |
+
text_encoder=self.text_encoder_2,
|
1005 |
+
# **kwargs
|
1006 |
+
)
|
1007 |
+
else:
|
1008 |
+
prompt_embeds_2 = None
|
1009 |
+
negative_prompt_embeds_2 = None
|
1010 |
+
prompt_mask_2 = None
|
1011 |
+
negative_prompt_mask_2 = None
|
1012 |
+
|
1013 |
+
|
1014 |
+
# For classifier free guidance, we need to do two forward passes.
|
1015 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
1016 |
+
# to avoid doing two forward passes
|
1017 |
+
if self.do_classifier_free_guidance:
|
1018 |
+
prompt_embeds_input = torch.cat([negative_prompt_embeds, prompt_embeds])
|
1019 |
+
if prompt_mask is not None:
|
1020 |
+
prompt_mask_input = torch.cat([negative_prompt_mask, prompt_mask])
|
1021 |
+
if prompt_embeds_2 is not None:
|
1022 |
+
prompt_embeds_2_input = torch.cat([negative_prompt_embeds_2, prompt_embeds_2])
|
1023 |
+
if prompt_mask_2 is not None:
|
1024 |
+
prompt_mask_2_input = torch.cat([negative_prompt_mask_2, prompt_mask_2])
|
1025 |
+
|
1026 |
+
if self.do_classifier_free_guidance:
|
1027 |
+
ref_latents = torch.cat([ref_latents, ref_latents], dim=0)
|
1028 |
+
|
1029 |
+
|
1030 |
+
# 4. Prepare timesteps
|
1031 |
+
extra_set_timesteps_kwargs = self.prepare_extra_func_kwargs(
|
1032 |
+
self.scheduler.set_timesteps, {"n_tokens": n_tokens}
|
1033 |
+
)
|
1034 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
1035 |
+
self.scheduler, num_inference_steps, device, timesteps, sigmas, **extra_set_timesteps_kwargs,
|
1036 |
+
)
|
1037 |
+
|
1038 |
+
video_length = audio_prompts.shape[1] // 4 * 4 + 1
|
1039 |
+
if "884" in vae_ver:
|
1040 |
+
video_length = (video_length - 1) // 4 + 1
|
1041 |
+
elif "888" in vae_ver:
|
1042 |
+
video_length = (video_length - 1) // 8 + 1
|
1043 |
+
else:
|
1044 |
+
video_length = video_length
|
1045 |
+
|
1046 |
+
|
1047 |
+
# 5. Prepare latent variables
|
1048 |
+
num_channels_latents = self.transformer.config.in_channels
|
1049 |
+
infer_length = (audio_prompts.shape[1] // 128 + 1) * 32 + 1
|
1050 |
+
latents = self.prepare_latents(
|
1051 |
+
batch_size * num_videos_per_prompt,
|
1052 |
+
num_channels_latents,
|
1053 |
+
height,
|
1054 |
+
width,
|
1055 |
+
infer_length,
|
1056 |
+
prompt_embeds.dtype,
|
1057 |
+
device,
|
1058 |
+
generator,
|
1059 |
+
latents,
|
1060 |
+
ref_latents[-1:],
|
1061 |
+
timesteps[:1]
|
1062 |
+
)
|
1063 |
+
|
1064 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1065 |
+
extra_step_kwargs = self.prepare_extra_func_kwargs(
|
1066 |
+
self.scheduler.step, {"generator": generator, "eta": eta},
|
1067 |
+
)
|
1068 |
+
|
1069 |
+
target_dtype = PRECISION_TO_TYPE[self.args.precision]
|
1070 |
+
autocast_enabled = (target_dtype != torch.float32) and not self.args.val_disable_autocast
|
1071 |
+
vae_dtype = PRECISION_TO_TYPE[self.args.vae_precision]
|
1072 |
+
vae_autocast_enabled = (vae_dtype != torch.float32) and not self.args.val_disable_autocast
|
1073 |
+
|
1074 |
+
# 7. Denoising loop
|
1075 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1076 |
+
self._num_timesteps = len(timesteps)
|
1077 |
+
|
1078 |
+
latents_all = latents.clone()
|
1079 |
+
pad_audio_length = (audio_prompts.shape[1] // 128 + 1) * 128 + 4 - audio_prompts.shape[1]
|
1080 |
+
audio_prompts_all = torch.cat([audio_prompts, torch.zeros_like(audio_prompts[:, :pad_audio_length])], dim=1)
|
1081 |
+
|
1082 |
+
|
1083 |
+
shift = 0
|
1084 |
+
shift_offset = 10
|
1085 |
+
frames_per_batch = 33
|
1086 |
+
self.cache_tensor = None
|
1087 |
+
|
1088 |
+
""" If the total length is shorter than 129, shift is not required """
|
1089 |
+
if video_length == 33 or infer_length == 33:
|
1090 |
+
infer_length = 33
|
1091 |
+
shift_offset = 0
|
1092 |
+
latents_all = latents_all[:, :, :33]
|
1093 |
+
audio_prompts_all = audio_prompts_all[:, :132]
|
1094 |
+
|
1095 |
+
if cpu_offload: torch.cuda.empty_cache()
|
1096 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1097 |
+
for i, t in enumerate(timesteps):
|
1098 |
+
if self.interrupt:
|
1099 |
+
continue
|
1100 |
+
|
1101 |
+
# init
|
1102 |
+
pred_latents = torch.zeros_like(
|
1103 |
+
latents_all,
|
1104 |
+
dtype=latents_all.dtype,
|
1105 |
+
)
|
1106 |
+
counter = torch.zeros(
|
1107 |
+
(latents_all.shape[0], latents_all.shape[1], infer_length, 1, 1),
|
1108 |
+
dtype=latents_all.dtype,
|
1109 |
+
).to(device=latents_all.device)
|
1110 |
+
|
1111 |
+
for index_start in range(0, infer_length, frames_per_batch):
|
1112 |
+
self.scheduler._step_index = None
|
1113 |
+
|
1114 |
+
index_start = index_start - shift
|
1115 |
+
|
1116 |
+
idx_list = [ii % latents_all.shape[2] for ii in range(index_start, index_start + frames_per_batch)]
|
1117 |
+
latents = latents_all[:, :, idx_list].clone()
|
1118 |
+
|
1119 |
+
idx_list_audio = [ii % audio_prompts_all.shape[1] for ii in range(index_start * 4, (index_start + frames_per_batch) * 4 - 3)]
|
1120 |
+
audio_prompts = audio_prompts_all[:, idx_list_audio].clone()
|
1121 |
+
|
1122 |
+
# expand the latents if we are doing classifier free guidance
|
1123 |
+
if self.do_classifier_free_guidance:
|
1124 |
+
latent_model_input = torch.cat([latents] * 2)
|
1125 |
+
else:
|
1126 |
+
latent_model_input = latents
|
1127 |
+
|
1128 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1129 |
+
|
1130 |
+
if self.do_classifier_free_guidance:
|
1131 |
+
if i < 10:
|
1132 |
+
self._guidance_scale = (1 - i / len(timesteps)) * (self.start_cfg_scale - 2) + 2
|
1133 |
+
audio_prompts_input = torch.cat([uncond_audio_prompts, audio_prompts], dim=0)
|
1134 |
+
face_masks_input = torch.cat([face_masks * 0.6] * 2, dim=0)
|
1135 |
+
else:
|
1136 |
+
# define 10-50 step cfg
|
1137 |
+
self._guidance_scale = (1 - i / len(timesteps)) * (6.5 - 3.5) + 3.5 # 5-2 +2
|
1138 |
+
|
1139 |
+
prompt_embeds_input = torch.cat([prompt_embeds, prompt_embeds])
|
1140 |
+
if prompt_mask is not None:
|
1141 |
+
prompt_mask_input = torch.cat([prompt_mask, prompt_mask])
|
1142 |
+
if prompt_embeds_2 is not None:
|
1143 |
+
prompt_embeds_2_input = torch.cat([prompt_embeds_2, prompt_embeds_2])
|
1144 |
+
if prompt_mask_2 is not None:
|
1145 |
+
prompt_mask_2_input = torch.cat([prompt_mask_2, prompt_mask_2])
|
1146 |
+
audio_prompts_input = torch.cat([uncond_audio_prompts, audio_prompts], dim=0)
|
1147 |
+
face_masks_input = torch.cat([face_masks] * 2, dim=0)
|
1148 |
+
|
1149 |
+
motion_exp_input = torch.cat([motion_exp] * 2, dim=0)
|
1150 |
+
motion_pose_input = torch.cat([motion_pose] * 2, dim=0)
|
1151 |
+
fps_input = torch.cat([fps] * 2, dim=0)
|
1152 |
+
|
1153 |
+
else:
|
1154 |
+
audio_prompts_input = audio_prompts
|
1155 |
+
face_masks_input = face_masks
|
1156 |
+
motion_exp_input = motion_exp
|
1157 |
+
motion_pose_input = motion_pose
|
1158 |
+
fps_input = fps
|
1159 |
+
|
1160 |
+
t_expand = t.repeat(latent_model_input.shape[0])
|
1161 |
+
guidance_expand = None
|
1162 |
+
|
1163 |
+
with torch.autocast(device_type="cuda", dtype=target_dtype, enabled=autocast_enabled):
|
1164 |
+
|
1165 |
+
no_cache_steps = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] + list(range(15, 42, 5)) + [41, 42, 43, 44, 45, 46, 47, 48, 49]
|
1166 |
+
img_len = (latent_model_input.shape[-1] // 2) * (latent_model_input.shape[-2] // 2) * latent_model_input.shape[-3]
|
1167 |
+
img_ref_len = (latent_model_input.shape[-1] // 2) * (latent_model_input.shape[-2] // 2) * (latent_model_input.shape[-3]+1)
|
1168 |
+
if i in no_cache_steps:
|
1169 |
+
is_cache = False
|
1170 |
+
|
1171 |
+
if latent_model_input.shape[-1]*latent_model_input.shape[-2]>64*112 and cpu_offload:
|
1172 |
+
if i==0:
|
1173 |
+
print(f'cpu_offload={cpu_offload} and {latent_model_input.shape[-2:]} is large, split infer noise-pred')
|
1174 |
+
|
1175 |
+
additional_kwargs = {
|
1176 |
+
"motion_exp": motion_exp_input[:1],
|
1177 |
+
"motion_pose": motion_pose_input[:1],
|
1178 |
+
"fps": fps_input[:1],
|
1179 |
+
"audio_prompts": audio_prompts_input[:1],
|
1180 |
+
"face_mask": face_masks_input[:1]
|
1181 |
+
}
|
1182 |
+
noise_pred_uncond = self.transformer(latent_model_input[:1], t_expand[:1], ref_latents=ref_latents[:1], text_states=prompt_embeds_input[:1], text_mask=prompt_mask_input[:1], text_states_2=prompt_embeds_2_input[:1], freqs_cos=freqs_cis[0], freqs_sin=freqs_cis[1], guidance=guidance_expand, return_dict=True, is_cache=is_cache, **additional_kwargs,)['x']
|
1183 |
+
uncond_cache_tensor = self.transformer.cache_out
|
1184 |
+
torch.cuda.empty_cache()
|
1185 |
+
|
1186 |
+
additional_kwargs = {
|
1187 |
+
"motion_exp": motion_exp_input[1:],
|
1188 |
+
"motion_pose": motion_pose_input[1:],
|
1189 |
+
"fps": fps_input[1:],
|
1190 |
+
"audio_prompts": audio_prompts_input[1:],
|
1191 |
+
"face_mask": face_masks_input[1:]
|
1192 |
+
}
|
1193 |
+
noise_pred_text = self.transformer(latent_model_input[1:], t_expand[1:], ref_latents=ref_latents[1:], text_states=prompt_embeds_input[1:], text_mask=prompt_mask_input[1:], text_states_2=prompt_embeds_2_input[1:], freqs_cos=freqs_cis[0], freqs_sin=freqs_cis[1], guidance=guidance_expand, return_dict=True, is_cache=is_cache, **additional_kwargs,)['x']
|
1194 |
+
self.transformer.cache_out = torch.cat([uncond_cache_tensor, self.transformer.cache_out], dim=0)
|
1195 |
+
|
1196 |
+
noise_pred = torch.cat([noise_pred_uncond, noise_pred_text], dim=0)
|
1197 |
+
torch.cuda.empty_cache()
|
1198 |
+
else:
|
1199 |
+
additional_kwargs = {
|
1200 |
+
"motion_exp": motion_exp_input,
|
1201 |
+
"motion_pose": motion_pose_input,
|
1202 |
+
"fps": fps_input,
|
1203 |
+
"audio_prompts": audio_prompts_input,
|
1204 |
+
"face_mask": face_masks_input
|
1205 |
+
}
|
1206 |
+
noise_pred = self.transformer(latent_model_input, t_expand, ref_latents=ref_latents, text_states=prompt_embeds_input, text_mask=prompt_mask_input, text_states_2=prompt_embeds_2_input, freqs_cos=freqs_cis[0], freqs_sin=freqs_cis[1], guidance=guidance_expand, return_dict=True, is_cache=is_cache, **additional_kwargs,)['x']
|
1207 |
+
torch.cuda.empty_cache()
|
1208 |
+
|
1209 |
+
if self.cache_tensor is None:
|
1210 |
+
self.cache_tensor = {
|
1211 |
+
"ref": torch.zeros([latent_model_input.shape[0], latents_all.shape[-3], (latent_model_input.shape[-1] // 2) * (latent_model_input.shape[-2] // 2), 3072]).to(self.transformer.cache_out.dtype).to(latent_model_input.device).clone(),
|
1212 |
+
"img": torch.zeros([latent_model_input.shape[0], latents_all.shape[-3], (latent_model_input.shape[-1] // 2) * (latent_model_input.shape[-2] // 2), 3072]).to(self.transformer.cache_out.dtype).to(latent_model_input.device).clone(),
|
1213 |
+
"txt": torch.zeros([latent_model_input.shape[0], latents_all.shape[-3], prompt_embeds_input.shape[1], 3072]).to(self.transformer.cache_out.dtype).to(latent_model_input.device).clone(),
|
1214 |
+
}
|
1215 |
+
|
1216 |
+
self.cache_tensor["ref"][:, idx_list] = self.transformer.cache_out[:, :img_ref_len-img_len].reshape(latent_model_input.shape[0], 1, -1, 3072).repeat(1, len(idx_list), 1, 1)
|
1217 |
+
self.cache_tensor["img"][:, idx_list] = self.transformer.cache_out[:, img_ref_len-img_len:img_ref_len].reshape(latent_model_input.shape[0], len(idx_list), -1, 3072)
|
1218 |
+
self.cache_tensor["txt"][:, idx_list] = self.transformer.cache_out[:, img_ref_len:].unsqueeze(1).repeat(1, len(idx_list), 1, 1)
|
1219 |
+
|
1220 |
+
else:
|
1221 |
+
is_cache = True
|
1222 |
+
# self.transformer.cache_out[:, :img_ref_len-img_len] = self.cache_tensor["ref"][:, idx_list].mean(1)
|
1223 |
+
self.transformer.cache_out[:, :img_ref_len-img_len] = self.cache_tensor["ref"][:, idx_list][:, 0].clone()
|
1224 |
+
self.transformer.cache_out[:, img_ref_len-img_len:img_ref_len] = self.cache_tensor["img"][:, idx_list].reshape(-1, img_len, 3072).clone()
|
1225 |
+
self.transformer.cache_out[:, img_ref_len:] = self.cache_tensor["txt"][:, idx_list][:, 0].clone()
|
1226 |
+
|
1227 |
+
if latent_model_input.shape[-1]*latent_model_input.shape[-2]>64*112 and cpu_offload:
|
1228 |
+
if i==0:
|
1229 |
+
print(f'cpu_offload={cpu_offload} and {latent_model_input.shape[-2:]} is large, split infer noise-pred')
|
1230 |
+
|
1231 |
+
additional_kwargs = {
|
1232 |
+
"motion_exp": motion_exp_input[:1],
|
1233 |
+
"motion_pose": motion_pose_input[:1],
|
1234 |
+
"fps": fps_input[:1],
|
1235 |
+
"audio_prompts": audio_prompts_input[:1],
|
1236 |
+
"face_mask": face_masks_input[:1]
|
1237 |
+
}
|
1238 |
+
tmp = self.transformer.cache_out.clone()
|
1239 |
+
self.transformer.cache_out = tmp[:1]
|
1240 |
+
noise_pred_uncond = self.transformer(latent_model_input[:1], t_expand[:1], ref_latents=ref_latents[:1], text_states=prompt_embeds_input[:1], text_mask=prompt_mask_input[:1], text_states_2=prompt_embeds_2_input[:1], freqs_cos=freqs_cis[0], freqs_sin=freqs_cis[1], guidance=guidance_expand, return_dict=True, is_cache=is_cache, **additional_kwargs,)['x']
|
1241 |
+
|
1242 |
+
|
1243 |
+
torch.cuda.empty_cache()
|
1244 |
+
|
1245 |
+
additional_kwargs = {
|
1246 |
+
"motion_exp": motion_exp_input[1:],
|
1247 |
+
"motion_pose": motion_pose_input[1:],
|
1248 |
+
"fps": fps_input[1:],
|
1249 |
+
"audio_prompts": audio_prompts_input[1:],
|
1250 |
+
"face_mask": face_masks_input[1:]
|
1251 |
+
}
|
1252 |
+
self.transformer.cache_out = tmp[1:]
|
1253 |
+
noise_pred_text = self.transformer(latent_model_input[1:], t_expand[1:], ref_latents=ref_latents[1:], text_states=prompt_embeds_input[1:], text_mask=prompt_mask_input[1:], text_states_2=prompt_embeds_2_input[1:], freqs_cos=freqs_cis[0], freqs_sin=freqs_cis[1], guidance=guidance_expand, return_dict=True, is_cache=is_cache, **additional_kwargs,)['x']
|
1254 |
+
noise_pred = torch.cat([noise_pred_uncond, noise_pred_text], dim=0)
|
1255 |
+
|
1256 |
+
self.transformer.cache_out = tmp
|
1257 |
+
torch.cuda.empty_cache()
|
1258 |
+
else:
|
1259 |
+
additional_kwargs = {
|
1260 |
+
"motion_exp": motion_exp_input,
|
1261 |
+
"motion_pose": motion_pose_input,
|
1262 |
+
"fps": fps_input,
|
1263 |
+
"audio_prompts": audio_prompts_input,
|
1264 |
+
"face_mask": face_masks_input
|
1265 |
+
}
|
1266 |
+
noise_pred = self.transformer(latent_model_input, t_expand, ref_latents=ref_latents, text_states=prompt_embeds_input, text_mask=prompt_mask_input, text_states_2=prompt_embeds_2_input, freqs_cos=freqs_cis[0], freqs_sin=freqs_cis[1], guidance=guidance_expand, return_dict=True, is_cache=is_cache, **additional_kwargs,)['x']
|
1267 |
+
torch.cuda.empty_cache()
|
1268 |
+
# perform guidance
|
1269 |
+
if self.do_classifier_free_guidance:
|
1270 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1271 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1272 |
+
|
1273 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
1274 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1275 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
1276 |
+
|
1277 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1278 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1279 |
+
|
1280 |
+
if callback_on_step_end is not None:
|
1281 |
+
callback_kwargs = {}
|
1282 |
+
for k in callback_on_step_end_tensor_inputs:
|
1283 |
+
callback_kwargs[k] = locals()[k]
|
1284 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1285 |
+
|
1286 |
+
latents = callback_outputs.pop("latents", latents)
|
1287 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1288 |
+
negative_prompt_embeds = callback_outputs.pop(
|
1289 |
+
"negative_prompt_embeds", negative_prompt_embeds
|
1290 |
+
)
|
1291 |
+
latents = latents.to(torch.bfloat16)
|
1292 |
+
for iii in range(frames_per_batch):
|
1293 |
+
p = (index_start + iii) % pred_latents.shape[2]
|
1294 |
+
pred_latents[:, :, p] += latents[:, :, iii]
|
1295 |
+
counter[:, :, p] += 1
|
1296 |
+
|
1297 |
+
shift += shift_offset
|
1298 |
+
shift = shift % frames_per_batch
|
1299 |
+
pred_latents = pred_latents / counter
|
1300 |
+
latents_all = pred_latents
|
1301 |
+
|
1302 |
+
# call the callback, if provided
|
1303 |
+
if i == len(timesteps) - 1 or (
|
1304 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
1305 |
+
):
|
1306 |
+
if progress_bar is not None:
|
1307 |
+
progress_bar.update()
|
1308 |
+
if callback is not None and i % callback_steps == 0:
|
1309 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1310 |
+
callback(step_idx, t, latents)
|
1311 |
+
|
1312 |
+
latents = latents_all.float()[:, :, :video_length]
|
1313 |
+
if cpu_offload: torch.cuda.empty_cache()
|
1314 |
+
|
1315 |
+
if not output_type == "latent":
|
1316 |
+
expand_temporal_dim = False
|
1317 |
+
if len(latents.shape) == 4:
|
1318 |
+
if isinstance(self.vae, AutoencoderKLCausal3D):
|
1319 |
+
latents = latents.unsqueeze(2)
|
1320 |
+
expand_temporal_dim = True
|
1321 |
+
elif len(latents.shape) == 5:
|
1322 |
+
pass
|
1323 |
+
else:
|
1324 |
+
raise ValueError(
|
1325 |
+
f"Only support latents with shape (b, c, h, w) or (b, c, f, h, w), but got {latents.shape}.")
|
1326 |
+
|
1327 |
+
if hasattr(self.vae.config, 'shift_factor') and self.vae.config.shift_factor:
|
1328 |
+
latents = latents / self.vae.config.scaling_factor + self.vae.config.shift_factor
|
1329 |
+
else:
|
1330 |
+
latents = latents / self.vae.config.scaling_factor
|
1331 |
+
|
1332 |
+
with torch.autocast(device_type="cuda", dtype=vae_dtype, enabled=vae_autocast_enabled):
|
1333 |
+
if enable_tiling:
|
1334 |
+
self.vae.enable_tiling()
|
1335 |
+
if cpu_offload:
|
1336 |
+
self.vae.post_quant_conv.to('cuda')
|
1337 |
+
self.vae.decoder.to('cuda')
|
1338 |
+
image = self.vae.decode(latents, return_dict=False, generator=generator)[0]
|
1339 |
+
self.vae.disable_tiling()
|
1340 |
+
if cpu_offload:
|
1341 |
+
self.vae.post_quant_conv.to('cpu')
|
1342 |
+
self.vae.decoder.to('cpu')
|
1343 |
+
torch.cuda.empty_cache()
|
1344 |
+
else:
|
1345 |
+
image = self.vae.decode(latents, return_dict=False, generator=generator)[0]
|
1346 |
+
if image is None:
|
1347 |
+
return (None, )
|
1348 |
+
|
1349 |
+
if expand_temporal_dim or image.shape[2] == 1:
|
1350 |
+
image = image.squeeze(2)
|
1351 |
+
|
1352 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
1353 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
1354 |
+
image = image.cpu().float()
|
1355 |
+
|
1356 |
+
# Offload all models
|
1357 |
+
self.maybe_free_model_hooks()
|
1358 |
+
|
1359 |
+
if cpu_offload: torch.cuda.empty_cache()
|
1360 |
+
if not return_dict:
|
1361 |
+
return image
|
1362 |
+
|
1363 |
+
return HunyuanVideoPipelineOutput(videos=image)
|
hymm_sp/diffusion/schedulers/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .scheduling_flow_match_discrete import FlowMatchDiscreteScheduler
|