Hunyuan-Avatar / hymm_sp /sample_batch.py
rahul7star's picture
Upload 99 files
357c94c verified
import os
import torch
import numpy as np
from pathlib import Path
from loguru import logger
from einops import rearrange
import torch.distributed
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import DataLoader
from hymm_sp.config import parse_args
from hymm_sp.sample_inference_audio import HunyuanVideoSampler
from hymm_sp.data_kits.audio_dataset import VideoAudioTextLoaderVal
from hymm_sp.data_kits.data_tools import save_videos_grid
from hymm_sp.data_kits.face_align import AlignImage
from hymm_sp.modules.parallel_states import (
initialize_distributed,
nccl_info,
)
from transformers import WhisperModel
from transformers import AutoFeatureExtractor
MODEL_OUTPUT_PATH = os.environ.get('MODEL_BASE')
def main():
args = parse_args()
models_root_path = Path(args.ckpt)
print("*"*20)
initialize_distributed(args.seed)
if not models_root_path.exists():
raise ValueError(f"`models_root` not exists: {models_root_path}")
print("+"*20)
# Create save folder to save the samples
save_path = args.save_path
if not os.path.exists(args.save_path):
os.makedirs(save_path, exist_ok=True)
# Load models
rank = 0
vae_dtype = torch.float16
device = torch.device("cuda")
if nccl_info.sp_size > 1:
device = torch.device(f"cuda:{torch.distributed.get_rank()}")
rank = torch.distributed.get_rank()
hunyuan_video_sampler = HunyuanVideoSampler.from_pretrained(args.ckpt, args=args, device=device)
# Get the updated args
args = hunyuan_video_sampler.args
wav2vec = WhisperModel.from_pretrained(f"{MODEL_OUTPUT_PATH}/ckpts/whisper-tiny/").to(device=device, dtype=torch.float32)
wav2vec.requires_grad_(False)
BASE_DIR = f'{MODEL_OUTPUT_PATH}/ckpts/det_align/'
det_path = os.path.join(BASE_DIR, 'detface.pt')
align_instance = AlignImage("cuda", det_path=det_path)
feature_extractor = AutoFeatureExtractor.from_pretrained(f"{MODEL_OUTPUT_PATH}/ckpts/whisper-tiny/")
kwargs = {
"text_encoder": hunyuan_video_sampler.text_encoder,
"text_encoder_2": hunyuan_video_sampler.text_encoder_2,
"feature_extractor": feature_extractor,
}
video_dataset = VideoAudioTextLoaderVal(
image_size=args.image_size,
meta_file=args.input,
**kwargs,
)
sampler = DistributedSampler(video_dataset, num_replicas=1, rank=0, shuffle=False, drop_last=False)
json_loader = DataLoader(video_dataset, batch_size=1, shuffle=False, sampler=sampler, drop_last=False)
for batch_index, batch in enumerate(json_loader, start=1):
fps = batch["fps"]
videoid = batch['videoid'][0]
audio_path = str(batch["audio_path"][0])
save_path = args.save_path
output_path = f"{save_path}/{videoid}.mp4"
output_audio_path = f"{save_path}/{videoid}_audio.mp4"
samples = hunyuan_video_sampler.predict(args, batch, wav2vec, feature_extractor, align_instance)
sample = samples['samples'][0].unsqueeze(0) # denoised latent, (bs, 16, t//4, h//8, w//8)
sample = sample[:, :, :batch["audio_len"][0]]
video = rearrange(sample[0], "c f h w -> f h w c")
video = (video * 255.).data.cpu().numpy().astype(np.uint8) # (f h w c)
torch.cuda.empty_cache()
final_frames = []
for frame in video:
final_frames.append(frame)
final_frames = np.stack(final_frames, axis=0)
if rank == 0:
from hymm_sp.data_kits.ffmpeg_utils import save_video
save_video(final_frames, output_path, n_rows=len(final_frames), fps=fps.item())
os.system(f"ffmpeg -i '{output_path}' -i '{audio_path}' -shortest '{output_audio_path}' -y -loglevel quiet; rm '{output_path}'")
if __name__ == "__main__":
main()