Spaces:
Build error
Build error
from dataclasses import dataclass | |
from typing import Optional, Tuple | |
from copy import deepcopy | |
import torch, os | |
import torch.nn as nn | |
from transformers import ( | |
CLIPTextModel, CLIPTokenizer, LlavaForConditionalGeneration, | |
LlamaTokenizerFast | |
) | |
from transformers.utils import ModelOutput | |
from ..constants import TEXT_ENCODER_PATH, TOKENIZER_PATH, PRECISION_TO_TYPE | |
CPU_OFFLOAD = int(os.environ.get("CPU_OFFLOAD", 0)) | |
print(f'text_encoder: cpu_offload={CPU_OFFLOAD}') | |
def use_default(value, default): | |
return value if value is not None else default | |
def load_text_encoder(text_encoder_type, | |
text_encoder_precision=None, | |
text_encoder_path=None, | |
logger=None, | |
device=None | |
): | |
if text_encoder_path is None: | |
text_encoder_path = TEXT_ENCODER_PATH[text_encoder_type] | |
if logger is not None: | |
logger.info(f"Loading text encoder model ({text_encoder_type}) from: {text_encoder_path}") | |
if text_encoder_type == "clipL": | |
text_encoder = CLIPTextModel.from_pretrained(text_encoder_path) | |
text_encoder.final_layer_norm = text_encoder.text_model.final_layer_norm | |
elif text_encoder_type == "llava-llama-3-8b": | |
text_encoder = LlavaForConditionalGeneration.from_pretrained(text_encoder_path, low_cpu_mem_usage=True) | |
text_encoder.final_layer_norm = text_encoder.language_model.model.norm | |
else: | |
raise ValueError(f"Unsupported text encoder type: {text_encoder_type}") | |
if text_encoder_precision is not None: | |
text_encoder = text_encoder.to(dtype=PRECISION_TO_TYPE[text_encoder_precision]) | |
text_encoder.requires_grad_(False) | |
if logger is not None: | |
logger.info(f"Text encoder to dtype: {text_encoder.dtype}") | |
if device is not None: | |
text_encoder = text_encoder.to(device) | |
return text_encoder, text_encoder_path | |
def load_tokenizer(tokenizer_type, | |
tokenizer_path=None, | |
padding_side="right", | |
logger=None | |
): | |
if tokenizer_path is None: | |
tokenizer_path = TOKENIZER_PATH[tokenizer_type] | |
if logger is not None: | |
logger.info(f"Loading tokenizer ({tokenizer_type}) from: {tokenizer_path}") | |
if tokenizer_type == "clipL": | |
tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path, max_length=77) | |
elif tokenizer_type == "llava-llama-3-8b": | |
tokenizer = LlamaTokenizerFast.from_pretrained(tokenizer_path, padding_side=padding_side) | |
else: | |
raise ValueError(f"Unsupported tokenizer type: {tokenizer_type}") | |
return tokenizer, tokenizer_path | |
class TextEncoderModelOutput(ModelOutput): | |
""" | |
Base class for model's outputs that also contains a pooling of the last hidden states. | |
Args: | |
hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
hidden_states_list (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
text_outputs (`list`, *optional*, returned when `return_texts=True` is passed): | |
List of decoded texts. | |
""" | |
hidden_state: torch.FloatTensor = None | |
attention_mask: Optional[torch.LongTensor] = None | |
hidden_states_list: Optional[Tuple[torch.FloatTensor, ...]] = None | |
text_outputs: Optional[list] = None | |
class TextEncoder(nn.Module): | |
def __init__(self, | |
text_encoder_type: str, | |
max_length: int, | |
text_encoder_precision: Optional[str] = None, | |
text_encoder_path: Optional[str] = None, | |
tokenizer_type: Optional[str] = None, | |
tokenizer_path: Optional[str] = None, | |
output_key: Optional[str] = None, | |
use_attention_mask: bool = True, | |
input_max_length: Optional[int] = None, | |
prompt_template_video: Optional[dict] = None, | |
hidden_state_skip_layer: Optional[int] = None, | |
apply_final_norm: bool = False, | |
reproduce: bool = False, | |
logger=None, | |
device=None, | |
): | |
super().__init__() | |
self.text_encoder_type = text_encoder_type | |
self.max_length = max_length | |
self.precision = text_encoder_precision | |
self.model_path = text_encoder_path | |
self.tokenizer_type = tokenizer_type if tokenizer_type is not None else text_encoder_type | |
self.tokenizer_path = tokenizer_path if tokenizer_path is not None else text_encoder_path | |
self.use_attention_mask = use_attention_mask | |
if prompt_template_video is not None: | |
assert use_attention_mask is True, "Attention mask is True required when training videos." | |
self.input_max_length = input_max_length if input_max_length is not None else max_length | |
self.prompt_template_video = prompt_template_video | |
self.hidden_state_skip_layer = hidden_state_skip_layer | |
self.apply_final_norm = apply_final_norm | |
self.reproduce = reproduce | |
self.logger = logger | |
self.use_video_template = self.prompt_template_video is not None | |
if self.use_video_template: | |
if self.prompt_template_video is not None: | |
assert isinstance(self.prompt_template_video, dict) and "template" in self.prompt_template_video, ( | |
f"`prompt_template_video` must be a dictionary with a key 'template', got {self.prompt_template_video}" | |
) | |
assert '{}' in str(self.prompt_template_video["template"]), ( | |
"`prompt_template_video['template']` must contain a placeholder `{}` for the input text, " | |
f"got {self.prompt_template_video['template']}" | |
) | |
if "clip" in text_encoder_type: | |
self.output_key = output_key or "pooler_output" | |
elif "llama" in text_encoder_type: | |
self.output_key = output_key or "last_hidden_state" | |
else: | |
raise ValueError(f"Unsupported text encoder type: {text_encoder_type}") | |
self.model, self.model_path = load_text_encoder( | |
text_encoder_type=self.text_encoder_type, | |
text_encoder_precision=self.precision, | |
text_encoder_path=self.model_path, | |
logger=self.logger, | |
device=device | |
) | |
self.dtype = self.model.dtype | |
self.device = self.model.device | |
self.tokenizer, self.tokenizer_path = load_tokenizer( | |
tokenizer_type=self.tokenizer_type, | |
tokenizer_path=self.tokenizer_path, | |
padding_side="right", | |
logger=self.logger | |
) | |
def __repr__(self): | |
return f"{self.text_encoder_type} ({self.precision} - {self.model_path})" | |
def apply_text_to_template(text, template): | |
""" | |
Apply text to template. | |
Args: | |
text (str): Input text. | |
template (str or list): Template string or list of chat conversation. | |
prevent_empty_text (bool): If Ture, we will prevent the user text from being empty | |
by adding a space. Defaults to True. | |
""" | |
if isinstance(template, str): | |
# Will send string to tokenizer. Used for llm | |
return template.format(text) | |
else: | |
raise TypeError(f"Unsupported template type: {type(template)}") | |
def text2tokens(self, text, data_type='video', name='person'): | |
""" | |
Tokenize the input text. | |
Args: | |
text (str or list): Input text. | |
""" | |
tokenize_input_type = 'str' | |
if self.use_video_template: | |
if data_type == 'video': | |
prompt_template = self.prompt_template_video["template"] | |
else: | |
raise ValueError(f"Unsupported data type: {data_type}") | |
if isinstance(text, (list, tuple)): | |
text = [self.apply_text_to_template(one_text, prompt_template) for one_text in text] | |
if isinstance(text[0], list): | |
tokenize_input_type = 'list' | |
elif isinstance(text, str): | |
text = self.apply_text_to_template(text, prompt_template) | |
if isinstance(text, list): | |
tokenize_input_type = 'list' | |
else: | |
raise TypeError(f"Unsupported text type: {type(text)}") | |
kwargs = dict(truncation=True, max_length=self.max_length, padding="max_length", return_tensors="pt") | |
if self.text_encoder_type == "llava-llama-3-8b": | |
if isinstance(text, list): | |
for i in range(len(text)): | |
text[i] = text[i] + '\nThe %s looks like<image>' % name | |
elif isinstance(text, str): | |
text = text + '\nThe %s looks like<image>' % name | |
else: | |
raise NotImplementedError | |
if tokenize_input_type == 'str': | |
return self.tokenizer(text, return_length=False, return_overflowing_tokens=False, return_attention_mask=True, **kwargs, ) | |
elif tokenize_input_type == 'list': | |
return self.tokenizer.apply_chat_template(text, add_generation_prompt=True, tokenize=True, return_dict=True, **kwargs, ) | |
else: | |
raise ValueError(f"Unsupported tokenize_input_type: {tokenize_input_type}") | |
def encode(self, batch_encoding, use_attention_mask=None, output_hidden_states=False, do_sample=None, | |
hidden_state_skip_layer=None, return_texts=False, data_type='image'): | |
""" | |
Args: | |
batch_encoding (dict): Batch encoding from tokenizer. | |
use_attention_mask (bool): Whether to use attention mask. If None, use self.use_attention_mask. | |
Defaults to None. | |
output_hidden_states (bool): Whether to output hidden states. If False, return the value of | |
self.output_key. If True, return the entire output. If set self.hidden_state_skip_layer, | |
output_hidden_states will be set True. Defaults to False. | |
do_sample (bool): Whether to sample from the model. Used for Decoder-Only LLMs. Defaults to None. | |
When self.produce is False, do_sample is set to True by default. | |
hidden_state_skip_layer (int): Number of hidden states to hidden_state_skip_layer. 0 means the last layer. | |
If None, self.output_key will be used. Defaults to None. | |
return_texts (bool): Whether to return the decoded texts. Defaults to False. | |
""" | |
use_attention_mask = use_default(use_attention_mask, self.use_attention_mask) | |
hidden_state_skip_layer = use_default(hidden_state_skip_layer, self.hidden_state_skip_layer) | |
do_sample = use_default(do_sample, not self.reproduce) | |
if CPU_OFFLOAD: | |
self.model.to('cuda') | |
print(f'encode prompt: move text_encoder to cuda') | |
attention_mask = batch_encoding["attention_mask"].to(self.model.device) if use_attention_mask else None | |
if 'pixel_value_llava' in batch_encoding: | |
outputs = self.model( | |
input_ids=batch_encoding["input_ids"].to(self.model.device), | |
attention_mask=attention_mask, | |
pixel_values=batch_encoding["pixel_value_llava"].to(self.model.device), | |
output_hidden_states=output_hidden_states or hidden_state_skip_layer is not None) | |
else: | |
outputs = self.model( | |
input_ids=batch_encoding["input_ids"].to(self.model.device), | |
attention_mask=attention_mask, | |
output_hidden_states=output_hidden_states or hidden_state_skip_layer is not None,) | |
if hidden_state_skip_layer is not None: | |
last_hidden_state = outputs.hidden_states[-(hidden_state_skip_layer + 1)] | |
# Real last hidden state already has layer norm applied. So here we only apply it | |
# for intermediate layers. | |
if hidden_state_skip_layer > 0 and self.apply_final_norm: | |
last_hidden_state = self.model.final_layer_norm(last_hidden_state) | |
else: | |
last_hidden_state = outputs[self.output_key] | |
# Remove hidden states of instruction tokens, only keep prompt tokens. | |
if self.use_video_template: | |
if data_type == 'video': | |
crop_start = self.prompt_template_video.get("crop_start", -1) | |
else: | |
raise ValueError(f"Unsupported data type: {data_type}") | |
if crop_start > 0: | |
last_hidden_state = last_hidden_state[:, crop_start:] | |
attention_mask = attention_mask[:, crop_start:] if use_attention_mask else None | |
if CPU_OFFLOAD: | |
self.model.to('cpu') | |
torch.cuda.empty_cache() | |
print(f'encode prompt successful: move text_encoder to cpu') | |
if output_hidden_states: | |
return TextEncoderModelOutput(last_hidden_state, attention_mask, outputs.hidden_states) | |
return TextEncoderModelOutput(last_hidden_state, attention_mask) | |
def forward(self, text, use_attention_mask=None, output_hidden_states=False, do_sample=False, | |
hidden_state_skip_layer=None, return_texts=False): | |
batch_encoding = self.text2tokens(text) | |
return self.encode(batch_encoding, use_attention_mask=use_attention_mask, | |
output_hidden_states=output_hidden_states, do_sample=do_sample, | |
hidden_state_skip_layer=hidden_state_skip_layer, return_texts=return_texts) | |