Spaces:
Sleeping
Sleeping
File size: 5,620 Bytes
0752ecf 98c9504 1c4e9d0 98c9504 0752ecf e9b8d71 98c9504 dc023a9 1c4e9d0 dc023a9 1c4e9d0 0752ecf dc023a9 1c4e9d0 0752ecf dc023a9 0752ecf dc023a9 0752ecf dc023a9 0752ecf 1c4e9d0 dc023a9 e9b8d71 dc023a9 1c4e9d0 dc023a9 1c4e9d0 dc023a9 1c4e9d0 dc023a9 0752ecf 1c4e9d0 dc023a9 1c4e9d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import gradio as gr
from PIL import Image, ImageDraw
import requests
from io import BytesIO
import numpy as np
import json
import tempfile
import easyocr
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from bs4 import BeautifulSoup
import base64
import re
# Initialize OCR models
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
reader = easyocr.Reader(['en'])
def extract_images_from_html(html_file):
"""Extract images from HTML file (base64 or URLs)"""
images = []
soup = BeautifulSoup(html_file.read(), "html.parser")
for img_tag in soup.find_all("img"):
src = img_tag.get("src")
if not src:
continue
if src.startswith("data:image"):
b64_data = re.sub(r"^data:image/.+;base64,", "", src)
image = Image.open(BytesIO(base64.b64decode(b64_data))).convert("RGB")
images.append(image)
else:
try:
response = requests.get(src)
image = Image.open(BytesIO(response.content)).convert("RGB")
images.append(image)
except:
continue
return images
def parse_html_text(html_file):
"""Parse HTML text and generate approximate bounding boxes"""
html_content = html_file.read().decode("utf-8")
soup = BeautifulSoup(html_content, "html.parser")
body_text = soup.get_text(separator="\n")
lines = [line.strip() for line in body_text.split("\n") if line.strip()]
words_json = []
lines_json = []
y_offset = 0
line_height = 20
char_width = 10
for line in lines:
line_words = line.split()
line_bbox = [0, y_offset, char_width * len(line), y_offset + line_height]
word_entries = []
x_offset = 0
for word in line_words:
word_bbox = [x_offset, y_offset, x_offset + char_width * len(word), y_offset + line_height]
word_entries.append({
"text": word,
"bbox": word_bbox
})
words_json.append({
"text": word,
"bbox": word_bbox
})
x_offset += char_width * (len(word) + 1)
lines_json.append({
"text": line,
"bbox": line_bbox,
"words": word_entries
})
y_offset += line_height
output_json = {
"words": words_json,
"lines": lines_json
}
return html_content, output_json
def load_image(image_file, image_url):
if image_file:
return [image_file]
elif image_url:
response = requests.get(image_url)
return [Image.open(BytesIO(response.content)).convert("RGB")]
return []
def detect_text_combined(image_file, image_url, html_file):
# HTML path
if html_file:
html_content, output_json = parse_html_text(html_file)
json_str = json.dumps(output_json, indent=2)
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".json", mode="w")
tmp_file.write(json_str)
tmp_file.close()
return html_content, json_str, tmp_file.name
# Image path
images = load_image(image_file, image_url)
if not images:
return None, "No input provided.", None
all_output_json = []
annotated_images = []
for image in images:
results = reader.readtext(np.array(image))
draw = ImageDraw.Draw(image)
words_json = []
for bbox, _, conf in results:
x_coords = [float(point[0]) for point in bbox]
y_coords = [float(point[1]) for point in bbox]
x_min, y_min = min(x_coords), min(y_coords)
x_max, y_max = max(x_coords), max(y_coords)
# Crop word for TrOCR recognition
word_crop = image.crop((x_min, y_min, x_max, y_max))
pixel_values = processor(images=word_crop, return_tensors="pt").pixel_values
generated_ids = model.generate(pixel_values)
text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
draw.rectangle([x_min, y_min, x_max, y_max], outline="red", width=2)
words_json.append({
"text": text,
"bbox": [x_min, y_min, x_max, y_max],
"confidence": float(conf)
})
paragraphs_json = words_json.copy()
output_json = {
"words": words_json,
"paragraphs": paragraphs_json
}
json_str = json.dumps(output_json, indent=2)
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".json", mode="w")
tmp_file.write(json_str)
tmp_file.close()
annotated_images.append((image, json_str, tmp_file.name))
# Return first image for simplicity (can extend to gallery)
return annotated_images[0]
iface = gr.Interface(
fn=detect_text_combined,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Textbox(label="Image URL (optional)"),
gr.File(label="Upload HTML File", file_types=[".html", ".htm"])
],
outputs=[
gr.Image(type="pil", label="Annotated Image / N/A for HTML"),
gr.Textbox(label="JSON Output"),
gr.File(label="Download JSON")
],
title="Combined OCR & HTML Text Bounding Box Extractor",
description="Upload an image, provide an image URL, or upload an HTML file. Outputs word- and line-level bounding boxes in JSON with annotated images for images."
)
if __name__ == "__main__":
iface.launch()
|