Spaces:
Paused
Paused
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
import gc | |
import logging | |
import math | |
import os | |
import random | |
import sys | |
import types | |
from contextlib import contextmanager | |
from functools import partial | |
from mmgp import offload | |
import torch | |
import torch.nn as nn | |
import torch.cuda.amp as amp | |
import torch.distributed as dist | |
import numpy as np | |
from tqdm import tqdm | |
from PIL import Image | |
import torchvision.transforms.functional as TF | |
import torch.nn.functional as F | |
from .distributed.fsdp import shard_model | |
from .modules.model import WanModel | |
from .modules.t5 import T5EncoderModel | |
from .modules.vae import WanVAE | |
from .modules.clip import CLIPModel | |
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler, | |
get_sampling_sigmas, retrieve_timesteps) | |
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler | |
from wan.modules.posemb_layers import get_rotary_pos_embed | |
from .utils.vace_preprocessor import VaceVideoProcessor | |
from wan.utils.basic_flowmatch import FlowMatchScheduler | |
from wan.utils.utils import get_outpainting_frame_location, resize_lanczos, calculate_new_dimensions | |
from .multitalk.multitalk_utils import MomentumBuffer, adaptive_projected_guidance, match_and_blend_colors, match_and_blend_colors_with_mask | |
from mmgp import safetensors2 | |
def optimized_scale(positive_flat, negative_flat): | |
# Calculate dot production | |
dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True) | |
# Squared norm of uncondition | |
squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8 | |
# st_star = v_cond^T * v_uncond / ||v_uncond||^2 | |
st_star = dot_product / squared_norm | |
return st_star | |
def timestep_transform(t, shift=5.0, num_timesteps=1000 ): | |
t = t / num_timesteps | |
# shift the timestep based on ratio | |
new_t = shift * t / (1 + (shift - 1) * t) | |
new_t = new_t * num_timesteps | |
return new_t | |
class WanAny2V: | |
def __init__( | |
self, | |
config, | |
checkpoint_dir, | |
model_filename = None, | |
model_type = None, | |
model_def = None, | |
base_model_type = None, | |
text_encoder_filename = None, | |
quantizeTransformer = False, | |
save_quantized = False, | |
dtype = torch.bfloat16, | |
VAE_dtype = torch.float32, | |
mixed_precision_transformer = False | |
): | |
self.device = torch.device(f"cuda") | |
self.config = config | |
self.VAE_dtype = VAE_dtype | |
self.dtype = dtype | |
self.num_train_timesteps = config.num_train_timesteps | |
self.param_dtype = config.param_dtype | |
self.model_def = model_def | |
self.model2 = None | |
self.transformer_switch = model_def.get("URLs2", None) is not None | |
self.text_encoder = T5EncoderModel( | |
text_len=config.text_len, | |
dtype=config.t5_dtype, | |
device=torch.device('cpu'), | |
checkpoint_path=text_encoder_filename, | |
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer), | |
shard_fn= None) | |
# base_model_type = "i2v2_2" | |
if hasattr(config, "clip_checkpoint") and not base_model_type in ["i2v_2_2"]: | |
self.clip = CLIPModel( | |
dtype=config.clip_dtype, | |
device=self.device, | |
checkpoint_path=os.path.join(checkpoint_dir , | |
config.clip_checkpoint), | |
tokenizer_path=os.path.join(checkpoint_dir , config.clip_tokenizer)) | |
self.vae_stride = config.vae_stride | |
self.patch_size = config.patch_size | |
self.vae = WanVAE( | |
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), dtype= VAE_dtype, | |
device=self.device) | |
# config_filename= "configs/t2v_1.3B.json" | |
# import json | |
# with open(config_filename, 'r', encoding='utf-8') as f: | |
# config = json.load(f) | |
# sd = safetensors2.torch_load_file(xmodel_filename) | |
# model_filename = "c:/temp/wan2.2i2v/low/diffusion_pytorch_model-00001-of-00006.safetensors" | |
base_config_file = f"configs/{base_model_type}.json" | |
forcedConfigPath = base_config_file if len(model_filename) > 1 else None | |
# forcedConfigPath = base_config_file = f"configs/flf2v_720p.json" | |
# model_filename[1] = xmodel_filename | |
if self.transformer_switch: | |
shared_modules= {} | |
self.model = offload.fast_load_transformers_model(model_filename[:1], modules = model_filename[2:], modelClass=WanModel,do_quantize= quantizeTransformer and not save_quantized, writable_tensors= False, defaultConfigPath=base_config_file , forcedConfigPath= forcedConfigPath, return_shared_modules= shared_modules) | |
self.model2 = offload.fast_load_transformers_model(model_filename[1:2], modules = shared_modules, modelClass=WanModel,do_quantize= quantizeTransformer and not save_quantized, writable_tensors= False, defaultConfigPath=base_config_file , forcedConfigPath= forcedConfigPath) | |
shared_modules = None | |
else: | |
self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer and not save_quantized, writable_tensors= False, defaultConfigPath=base_config_file , forcedConfigPath= forcedConfigPath) | |
# self.model = offload.load_model_data(self.model, xmodel_filename ) | |
# offload.load_model_data(self.model, "c:/temp/Phantom-Wan-1.3B.pth") | |
self.model.lock_layers_dtypes(torch.float32 if mixed_precision_transformer else dtype) | |
offload.change_dtype(self.model, dtype, True) | |
if self.model2 is not None: | |
self.model2.lock_layers_dtypes(torch.float32 if mixed_precision_transformer else dtype) | |
offload.change_dtype(self.model2, dtype, True) | |
# offload.save_model(self.model, "wan2.1_text2video_1.3B_mbf16.safetensors", do_quantize= False, config_file_path=base_config_file, filter_sd=sd) | |
# offload.save_model(self.model, "wan2.2_image2video_14B_low_mbf16.safetensors", config_file_path=base_config_file) | |
# offload.save_model(self.model, "wan2.2_image2video_14B_low_quanto_mbf16_int8.safetensors", do_quantize=True, config_file_path=base_config_file) | |
self.model.eval().requires_grad_(False) | |
if self.model2 is not None: | |
self.model2.eval().requires_grad_(False) | |
if save_quantized: | |
from wgp import save_quantized_model | |
save_quantized_model(self.model, model_type, model_filename[0], dtype, base_config_file) | |
if self.model2 is not None: | |
save_quantized_model(self.model2, model_type, model_filename[1], dtype, base_config_file, submodel_no=2) | |
self.sample_neg_prompt = config.sample_neg_prompt | |
if self.model.config.get("vace_in_dim", None) != None: | |
self.vid_proc = VaceVideoProcessor(downsample=tuple([x * y for x, y in zip(config.vae_stride, self.patch_size)]), | |
min_area=480*832, | |
max_area=480*832, | |
min_fps=config.sample_fps, | |
max_fps=config.sample_fps, | |
zero_start=True, | |
seq_len=32760, | |
keep_last=True) | |
self.adapt_vace_model(self.model) | |
if self.model2 is not None: self.adapt_vace_model(self.model2) | |
self.num_timesteps = 1000 | |
self.use_timestep_transform = True | |
def vace_encode_frames(self, frames, ref_images, masks=None, tile_size = 0, overlapped_latents = None): | |
if ref_images is None: | |
ref_images = [None] * len(frames) | |
else: | |
assert len(frames) == len(ref_images) | |
if masks is None: | |
latents = self.vae.encode(frames, tile_size = tile_size) | |
else: | |
inactive = [i * (1 - m) + 0 * m for i, m in zip(frames, masks)] | |
reactive = [i * m + 0 * (1 - m) for i, m in zip(frames, masks)] | |
inactive = self.vae.encode(inactive, tile_size = tile_size) | |
if overlapped_latents != None and False : # disabled as quality seems worse | |
# inactive[0][:, 0:1] = self.vae.encode([frames[0][:, 0:1]], tile_size = tile_size)[0] # redundant | |
for t in inactive: | |
t[:, 1:overlapped_latents.shape[1] + 1] = overlapped_latents | |
overlapped_latents[: 0:1] = inactive[0][: 0:1] | |
reactive = self.vae.encode(reactive, tile_size = tile_size) | |
latents = [torch.cat((u, c), dim=0) for u, c in zip(inactive, reactive)] | |
cat_latents = [] | |
for latent, refs in zip(latents, ref_images): | |
if refs is not None: | |
if masks is None: | |
ref_latent = self.vae.encode(refs, tile_size = tile_size) | |
else: | |
ref_latent = self.vae.encode(refs, tile_size = tile_size) | |
ref_latent = [torch.cat((u, torch.zeros_like(u)), dim=0) for u in ref_latent] | |
assert all([x.shape[1] == 1 for x in ref_latent]) | |
latent = torch.cat([*ref_latent, latent], dim=1) | |
cat_latents.append(latent) | |
return cat_latents | |
def vace_encode_masks(self, masks, ref_images=None): | |
if ref_images is None: | |
ref_images = [None] * len(masks) | |
else: | |
assert len(masks) == len(ref_images) | |
result_masks = [] | |
for mask, refs in zip(masks, ref_images): | |
c, depth, height, width = mask.shape | |
new_depth = int((depth + 3) // self.vae_stride[0]) # nb latents token without (ref tokens not included) | |
height = 2 * (int(height) // (self.vae_stride[1] * 2)) | |
width = 2 * (int(width) // (self.vae_stride[2] * 2)) | |
# reshape | |
mask = mask[0, :, :, :] | |
mask = mask.view( | |
depth, height, self.vae_stride[1], width, self.vae_stride[1] | |
) # depth, height, 8, width, 8 | |
mask = mask.permute(2, 4, 0, 1, 3) # 8, 8, depth, height, width | |
mask = mask.reshape( | |
self.vae_stride[1] * self.vae_stride[2], depth, height, width | |
) # 8*8, depth, height, width | |
# interpolation | |
mask = F.interpolate(mask.unsqueeze(0), size=(new_depth, height, width), mode='nearest-exact').squeeze(0) | |
if refs is not None: | |
length = len(refs) | |
mask_pad = torch.zeros(mask.shape[0], length, *mask.shape[-2:], dtype=mask.dtype, device=mask.device) | |
mask = torch.cat((mask_pad, mask), dim=1) | |
result_masks.append(mask) | |
return result_masks | |
def vace_latent(self, z, m): | |
return [torch.cat([zz, mm], dim=0) for zz, mm in zip(z, m)] | |
def fit_image_into_canvas(self, ref_img, image_size, canvas_tf_bg, device, fill_max = False, outpainting_dims = None, return_mask = False): | |
from wan.utils.utils import save_image | |
ref_width, ref_height = ref_img.size | |
if (ref_height, ref_width) == image_size and outpainting_dims == None: | |
ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1) | |
canvas = torch.zeros_like(ref_img) if return_mask else None | |
else: | |
if outpainting_dims != None: | |
final_height, final_width = image_size | |
canvas_height, canvas_width, margin_top, margin_left = get_outpainting_frame_location(final_height, final_width, outpainting_dims, 8) | |
else: | |
canvas_height, canvas_width = image_size | |
scale = min(canvas_height / ref_height, canvas_width / ref_width) | |
new_height = int(ref_height * scale) | |
new_width = int(ref_width * scale) | |
if fill_max and (canvas_height - new_height) < 16: | |
new_height = canvas_height | |
if fill_max and (canvas_width - new_width) < 16: | |
new_width = canvas_width | |
top = (canvas_height - new_height) // 2 | |
left = (canvas_width - new_width) // 2 | |
ref_img = ref_img.resize((new_width, new_height), resample=Image.Resampling.LANCZOS) | |
ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1) | |
if outpainting_dims != None: | |
canvas = torch.full((3, 1, final_height, final_width), canvas_tf_bg, dtype= torch.float, device=device) # [-1, 1] | |
canvas[:, :, margin_top + top:margin_top + top + new_height, margin_left + left:margin_left + left + new_width] = ref_img | |
else: | |
canvas = torch.full((3, 1, canvas_height, canvas_width), canvas_tf_bg, dtype= torch.float, device=device) # [-1, 1] | |
canvas[:, :, top:top + new_height, left:left + new_width] = ref_img | |
ref_img = canvas | |
canvas = None | |
if return_mask: | |
if outpainting_dims != None: | |
canvas = torch.ones((3, 1, final_height, final_width), dtype= torch.float, device=device) # [-1, 1] | |
canvas[:, :, margin_top + top:margin_top + top + new_height, margin_left + left:margin_left + left + new_width] = 0 | |
else: | |
canvas = torch.ones((3, 1, canvas_height, canvas_width), dtype= torch.float, device=device) # [-1, 1] | |
canvas[:, :, top:top + new_height, left:left + new_width] = 0 | |
canvas = canvas.to(device) | |
return ref_img.to(device), canvas | |
def prepare_source(self, src_video, src_mask, src_ref_images, total_frames, image_size, device, keep_video_guide_frames= [], start_frame = 0, fit_into_canvas = None, pre_src_video = None, inject_frames = [], outpainting_dims = None, any_background_ref = False): | |
image_sizes = [] | |
trim_video_guide = len(keep_video_guide_frames) | |
def conv_tensor(t, device): | |
return t.float().div_(127.5).add_(-1).permute(3, 0, 1, 2).to(device) | |
for i, (sub_src_video, sub_src_mask, sub_pre_src_video) in enumerate(zip(src_video, src_mask,pre_src_video)): | |
prepend_count = 0 if sub_pre_src_video == None else sub_pre_src_video.shape[1] | |
num_frames = total_frames - prepend_count | |
num_frames = min(num_frames, trim_video_guide) if trim_video_guide > 0 and sub_src_video != None else num_frames | |
if sub_src_mask is not None and sub_src_video is not None: | |
src_video[i] = conv_tensor(sub_src_video[:num_frames], device) | |
src_mask[i] = conv_tensor(sub_src_mask[:num_frames], device) | |
# src_video is [-1, 1] (at this function output), 0 = inpainting area (in fact 127 in [0, 255]) | |
# src_mask is [-1, 1] (at this function output), 0 = preserve original video (in fact 127 in [0, 255]) and 1 = Inpainting (in fact 255 in [0, 255]) | |
if prepend_count > 0: | |
src_video[i] = torch.cat( [sub_pre_src_video, src_video[i]], dim=1) | |
src_mask[i] = torch.cat( [torch.full_like(sub_pre_src_video, -1.0), src_mask[i]] ,1) | |
src_video_shape = src_video[i].shape | |
if src_video_shape[1] != total_frames: | |
src_video[i] = torch.cat( [src_video[i], src_video[i].new_zeros(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1) | |
src_mask[i] = torch.cat( [src_mask[i], src_mask[i].new_ones(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1) | |
src_mask[i] = torch.clamp((src_mask[i][:, :, :, :] + 1) / 2, min=0, max=1) | |
image_sizes.append(src_video[i].shape[2:]) | |
elif sub_src_video is None: | |
if prepend_count > 0: | |
src_video[i] = torch.cat( [sub_pre_src_video, torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)], dim=1) | |
src_mask[i] = torch.cat( [torch.zeros_like(sub_pre_src_video), torch.ones((3, num_frames, image_size[0], image_size[1]), device=device)] ,1) | |
else: | |
src_video[i] = torch.zeros((3, total_frames, image_size[0], image_size[1]), device=device) | |
src_mask[i] = torch.ones_like(src_video[i], device=device) | |
image_sizes.append(image_size) | |
else: | |
src_video[i] = conv_tensor(sub_src_video[:num_frames], device) | |
src_mask[i] = torch.ones_like(src_video[i], device=device) | |
if prepend_count > 0: | |
src_video[i] = torch.cat( [sub_pre_src_video, src_video[i]], dim=1) | |
src_mask[i] = torch.cat( [torch.zeros_like(sub_pre_src_video), src_mask[i]] ,1) | |
src_video_shape = src_video[i].shape | |
if src_video_shape[1] != total_frames: | |
src_video[i] = torch.cat( [src_video[i], src_video[i].new_zeros(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1) | |
src_mask[i] = torch.cat( [src_mask[i], src_mask[i].new_ones(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1) | |
image_sizes.append(src_video[i].shape[2:]) | |
for k, keep in enumerate(keep_video_guide_frames): | |
if not keep: | |
pos = prepend_count + k | |
src_video[i][:, pos:pos+1] = 0 | |
src_mask[i][:, pos:pos+1] = 1 | |
for k, frame in enumerate(inject_frames): | |
if frame != None: | |
pos = prepend_count + k | |
src_video[i][:, pos:pos+1], src_mask[i][:, pos:pos+1] = self.fit_image_into_canvas(frame, image_size, 0, device, True, outpainting_dims, return_mask= True) | |
self.background_mask = None | |
for i, ref_images in enumerate(src_ref_images): | |
if ref_images is not None: | |
image_size = image_sizes[i] | |
for j, ref_img in enumerate(ref_images): | |
if ref_img is not None and not torch.is_tensor(ref_img): | |
if j==0 and any_background_ref: | |
if self.background_mask == None: self.background_mask = [None] * len(src_ref_images) | |
src_ref_images[i][j], self.background_mask[i] = self.fit_image_into_canvas(ref_img, image_size, 0, device, True, outpainting_dims, return_mask= True) | |
else: | |
src_ref_images[i][j], _ = self.fit_image_into_canvas(ref_img, image_size, 1, device) | |
if self.background_mask != None: | |
self.background_mask = [ item if item != None else self.background_mask[0] for item in self.background_mask ] # deplicate background mask with double control net since first controlnet image ref modifed by ref | |
return src_video, src_mask, src_ref_images | |
def get_vae_latents(self, ref_images, device, tile_size= 0): | |
ref_vae_latents = [] | |
for ref_image in ref_images: | |
ref_image = TF.to_tensor(ref_image).sub_(0.5).div_(0.5).to(self.device) | |
img_vae_latent = self.vae.encode([ref_image.unsqueeze(1)], tile_size= tile_size) | |
ref_vae_latents.append(img_vae_latent[0]) | |
return torch.cat(ref_vae_latents, dim=1) | |
def generate(self, | |
input_prompt, | |
input_frames= None, | |
input_masks = None, | |
input_ref_images = None, | |
input_video = None, | |
image_start = None, | |
image_end = None, | |
denoising_strength = 1.0, | |
target_camera=None, | |
context_scale=None, | |
width = 1280, | |
height = 720, | |
fit_into_canvas = True, | |
frame_num=81, | |
batch_size = 1, | |
shift=5.0, | |
sample_solver='unipc', | |
sampling_steps=50, | |
guide_scale=5.0, | |
guide2_scale = 5.0, | |
switch_threshold = 0, | |
n_prompt="", | |
seed=-1, | |
callback = None, | |
enable_RIFLEx = None, | |
VAE_tile_size = 0, | |
joint_pass = False, | |
slg_layers = None, | |
slg_start = 0.0, | |
slg_end = 1.0, | |
cfg_star_switch = True, | |
cfg_zero_step = 5, | |
audio_scale=None, | |
audio_cfg_scale=None, | |
audio_proj=None, | |
audio_context_lens=None, | |
overlapped_latents = None, | |
return_latent_slice = None, | |
overlap_noise = 0, | |
conditioning_latents_size = 0, | |
keep_frames_parsed = [], | |
model_type = None, | |
model_mode = None, | |
loras_slists = None, | |
NAG_scale = 0, | |
NAG_tau = 3.5, | |
NAG_alpha = 0.5, | |
offloadobj = None, | |
apg_switch = False, | |
speakers_bboxes = None, | |
color_correction_strength = 1, | |
prefix_frames_count = 0, | |
image_mode = 0, | |
**bbargs | |
): | |
if sample_solver =="euler": | |
# prepare timesteps | |
timesteps = list(np.linspace(self.num_timesteps, 1, sampling_steps, dtype=np.float32)) | |
timesteps.append(0.) | |
timesteps = [torch.tensor([t], device=self.device) for t in timesteps] | |
if self.use_timestep_transform: | |
timesteps = [timestep_transform(t, shift=shift, num_timesteps=self.num_timesteps) for t in timesteps][:-1] | |
sample_scheduler = None | |
elif sample_solver == 'causvid': | |
sample_scheduler = FlowMatchScheduler(num_inference_steps=sampling_steps, shift=shift, sigma_min=0, extra_one_step=True) | |
timesteps = torch.tensor([1000, 934, 862, 756, 603, 410, 250, 140, 74])[:sampling_steps].to(self.device) | |
sample_scheduler.timesteps =timesteps | |
sample_scheduler.sigmas = torch.cat([sample_scheduler.timesteps / 1000, torch.tensor([0.], device=self.device)]) | |
elif sample_solver == 'unipc' or sample_solver == "": | |
sample_scheduler = FlowUniPCMultistepScheduler( num_train_timesteps=self.num_train_timesteps, shift=1, use_dynamic_shifting=False) | |
sample_scheduler.set_timesteps( sampling_steps, device=self.device, shift=shift) | |
timesteps = sample_scheduler.timesteps | |
elif sample_solver == 'dpm++': | |
sample_scheduler = FlowDPMSolverMultistepScheduler( | |
num_train_timesteps=self.num_train_timesteps, | |
shift=1, | |
use_dynamic_shifting=False) | |
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift) | |
timesteps, _ = retrieve_timesteps( | |
sample_scheduler, | |
device=self.device, | |
sigmas=sampling_sigmas) | |
else: | |
raise NotImplementedError(f"Unsupported Scheduler {sample_solver}") | |
seed_g = torch.Generator(device=self.device) | |
seed_g.manual_seed(seed) | |
image_outputs = image_mode == 1 | |
kwargs = {'pipeline': self, 'callback': callback} | |
color_reference_frame = None | |
if self._interrupt: | |
return None | |
# Text Encoder | |
if n_prompt == "": | |
n_prompt = self.sample_neg_prompt | |
context = self.text_encoder([input_prompt], self.device)[0] | |
context_null = self.text_encoder([n_prompt], self.device)[0] | |
context = context.to(self.dtype) | |
context_null = context_null.to(self.dtype) | |
text_len = self.model.text_len | |
context = torch.cat([context, context.new_zeros(text_len -context.size(0), context.size(1)) ]).unsqueeze(0) | |
context_null = torch.cat([context_null, context_null.new_zeros(text_len -context_null.size(0), context_null.size(1)) ]).unsqueeze(0) | |
# NAG_prompt = "static, low resolution, blurry" | |
# context_NAG = self.text_encoder([NAG_prompt], self.device)[0] | |
# context_NAG = context_NAG.to(self.dtype) | |
# context_NAG = torch.cat([context_NAG, context_NAG.new_zeros(text_len -context_NAG.size(0), context_NAG.size(1)) ]).unsqueeze(0) | |
# from mmgp import offload | |
# offloadobj.unload_all() | |
offload.shared_state.update({"_nag_scale" : NAG_scale, "_nag_tau" : NAG_tau, "_nag_alpha": NAG_alpha }) | |
if NAG_scale > 1: context = torch.cat([context, context_null], dim=0) | |
# if NAG_scale > 1: context = torch.cat([context, context_NAG], dim=0) | |
if self._interrupt: return None | |
vace = model_type in ["vace_1.3B","vace_14B", "vace_multitalk_14B"] | |
phantom = model_type in ["phantom_1.3B", "phantom_14B"] | |
fantasy = model_type in ["fantasy"] | |
multitalk = model_type in ["multitalk", "vace_multitalk_14B"] | |
recam = model_type in ["recam_1.3B"] | |
ref_images_count = 0 | |
trim_frames = 0 | |
extended_overlapped_latents = None | |
lat_frames = int((frame_num - 1) // self.vae_stride[0]) + 1 | |
# image2video | |
if model_type in ["i2v", "i2v_2_2", "fantasy", "multitalk", "flf2v_720p"]: | |
any_end_frame = False | |
if image_start is None: | |
_ , preframes_count, height, width = input_video.shape | |
lat_h, lat_w = height // self.vae_stride[1], width // self.vae_stride[2] | |
if hasattr(self, "clip"): | |
clip_image_size = self.clip.model.image_size | |
clip_image = resize_lanczos(input_video[:, -1], clip_image_size, clip_image_size)[:, None, :, :] | |
clip_context = self.clip.visual([clip_image]) if model_type != "flf2v_720p" else self.clip.visual([clip_image , clip_image ]) | |
clip_image = None | |
else: | |
clip_context = None | |
input_video = input_video.to(device=self.device).to(dtype= self.VAE_dtype) | |
enc = torch.concat( [input_video, torch.zeros( (3, frame_num-preframes_count, height, width), | |
device=self.device, dtype= self.VAE_dtype)], | |
dim = 1).to(self.device) | |
color_reference_frame = input_video[:, -1:].clone() | |
input_video = None | |
else: | |
preframes_count = 1 | |
any_end_frame = image_end is not None | |
add_frames_for_end_image = any_end_frame and model_type == "i2v" | |
if any_end_frame: | |
if add_frames_for_end_image: | |
frame_num +=1 | |
lat_frames = int((frame_num - 2) // self.vae_stride[0] + 2) | |
trim_frames = 1 | |
height, width = image_start.shape[1:] | |
lat_h = round( | |
height // self.vae_stride[1] // | |
self.patch_size[1] * self.patch_size[1]) | |
lat_w = round( | |
width // self.vae_stride[2] // | |
self.patch_size[2] * self.patch_size[2]) | |
height = lat_h * self.vae_stride[1] | |
width = lat_w * self.vae_stride[2] | |
image_start_frame = image_start.unsqueeze(1).to(self.device) | |
color_reference_frame = image_start_frame.clone() | |
if image_end is not None: | |
img_end_frame = image_end.unsqueeze(1).to(self.device) | |
if hasattr(self, "clip"): | |
clip_image_size = self.clip.model.image_size | |
image_start = resize_lanczos(image_start, clip_image_size, clip_image_size) | |
if image_end is not None: image_end = resize_lanczos(image_end, clip_image_size, clip_image_size) | |
if model_type == "flf2v_720p": | |
clip_context = self.clip.visual([image_start[:, None, :, :], image_end[:, None, :, :] if image_end is not None else image_start[:, None, :, :]]) | |
else: | |
clip_context = self.clip.visual([image_start[:, None, :, :]]) | |
else: | |
clip_context = None | |
if any_end_frame: | |
enc= torch.concat([ | |
image_start_frame, | |
torch.zeros( (3, frame_num-2, height, width), device=self.device, dtype= self.VAE_dtype), | |
img_end_frame, | |
], dim=1).to(self.device) | |
else: | |
enc= torch.concat([ | |
image_start_frame, | |
torch.zeros( (3, frame_num-1, height, width), device=self.device, dtype= self.VAE_dtype) | |
], dim=1).to(self.device) | |
image_start = image_end = image_start_frame = img_end_frame = None | |
msk = torch.ones(1, frame_num, lat_h, lat_w, device=self.device) | |
if any_end_frame: | |
msk[:, preframes_count: -1] = 0 | |
if add_frames_for_end_image: | |
msk = torch.concat([ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:-1], torch.repeat_interleave(msk[:, -1:], repeats=4, dim=1) ], dim=1) | |
else: | |
msk = torch.concat([ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:] ], dim=1) | |
else: | |
msk[:, preframes_count:] = 0 | |
msk = torch.concat([ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:] ], dim=1) | |
msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w) | |
msk = msk.transpose(1, 2)[0] | |
lat_y = self.vae.encode([enc], VAE_tile_size, any_end_frame= any_end_frame and add_frames_for_end_image)[0] | |
overlapped_latents_frames_num = int(1 + (preframes_count-1) // 4) | |
if overlapped_latents != None: | |
# disabled because looks worse | |
if False and overlapped_latents_frames_num > 1: lat_y[:, :, 1:overlapped_latents_frames_num] = overlapped_latents[:, 1:] | |
extended_overlapped_latents = lat_y[:, :overlapped_latents_frames_num].clone().unsqueeze(0) | |
y = torch.concat([msk, lat_y]) | |
lat_y = None | |
kwargs.update({ 'y': y}) | |
if not clip_context is None: | |
kwargs.update({'clip_fea': clip_context}) | |
# Recam Master | |
if recam: | |
# should be be in fact in input_frames since it is control video not a video to be extended | |
target_camera = model_mode | |
width = input_video.shape[2] | |
height = input_video.shape[1] | |
input_video = input_video.to(dtype=self.dtype , device=self.device) | |
source_latents = self.vae.encode([input_video])[0] #.to(dtype=self.dtype, device=self.device) | |
del input_video | |
# Process target camera (recammaster) | |
from wan.utils.cammmaster_tools import get_camera_embedding | |
cam_emb = get_camera_embedding(target_camera) | |
cam_emb = cam_emb.to(dtype=self.dtype, device=self.device) | |
kwargs['cam_emb'] = cam_emb | |
# Video 2 Video | |
if denoising_strength < 1. and input_frames != None: | |
height, width = input_frames.shape[-2:] | |
source_latents = self.vae.encode([input_frames])[0] | |
injection_denoising_step = 0 | |
inject_from_start = False | |
if input_frames != None and denoising_strength < 1 : | |
color_reference_frame = input_frames[:, -1:].clone() | |
if overlapped_latents != None: | |
overlapped_latents_frames_num = overlapped_latents.shape[2] | |
overlapped_frames_num = (overlapped_latents_frames_num-1) * 4 + 1 | |
else: | |
overlapped_latents_frames_num = overlapped_frames_num = 0 | |
if len(keep_frames_parsed) == 0 or image_outputs or (overlapped_frames_num + len(keep_frames_parsed)) == input_frames.shape[1] and all(keep_frames_parsed) : keep_frames_parsed = [] | |
injection_denoising_step = int(sampling_steps * (1. - denoising_strength) ) | |
latent_keep_frames = [] | |
if source_latents.shape[1] < lat_frames or len(keep_frames_parsed) > 0: | |
inject_from_start = True | |
if len(keep_frames_parsed) >0 : | |
if overlapped_frames_num > 0: keep_frames_parsed = [True] * overlapped_frames_num + keep_frames_parsed | |
latent_keep_frames =[keep_frames_parsed[0]] | |
for i in range(1, len(keep_frames_parsed), 4): | |
latent_keep_frames.append(all(keep_frames_parsed[i:i+4])) | |
else: | |
timesteps = timesteps[injection_denoising_step:] | |
if hasattr(sample_scheduler, "timesteps"): sample_scheduler.timesteps = timesteps | |
if hasattr(sample_scheduler, "sigmas"): sample_scheduler.sigmas= sample_scheduler.sigmas[injection_denoising_step:] | |
injection_denoising_step = 0 | |
# Phantom | |
if phantom: | |
input_ref_images_neg = None | |
if input_ref_images != None: # Phantom Ref images | |
input_ref_images = self.get_vae_latents(input_ref_images, self.device) | |
input_ref_images_neg = torch.zeros_like(input_ref_images) | |
ref_images_count = input_ref_images.shape[1] if input_ref_images != None else 0 | |
trim_frames = input_ref_images.shape[1] | |
# Vace | |
if vace : | |
# vace context encode | |
input_frames = [u.to(self.device) for u in input_frames] | |
input_ref_images = [ None if u == None else [v.to(self.device) for v in u] for u in input_ref_images] | |
input_masks = [u.to(self.device) for u in input_masks] | |
if self.background_mask != None: self.background_mask = [m.to(self.device) for m in self.background_mask] | |
z0 = self.vace_encode_frames(input_frames, input_ref_images, masks=input_masks, tile_size = VAE_tile_size, overlapped_latents = overlapped_latents ) | |
m0 = self.vace_encode_masks(input_masks, input_ref_images) | |
if self.background_mask != None: | |
color_reference_frame = input_ref_images[0][0].clone() | |
zbg = self.vace_encode_frames([ref_img[0] for ref_img in input_ref_images], None, masks=self.background_mask, tile_size = VAE_tile_size ) | |
mbg = self.vace_encode_masks(self.background_mask, None) | |
for zz0, mm0, zzbg, mmbg in zip(z0, m0, zbg, mbg): | |
zz0[:, 0:1] = zzbg | |
mm0[:, 0:1] = mmbg | |
self.background_mask = zz0 = mm0 = zzbg = mmbg = None | |
z = self.vace_latent(z0, m0) | |
ref_images_count = len(input_ref_images[0]) if input_ref_images != None and input_ref_images[0] != None else 0 | |
context_scale = context_scale if context_scale != None else [1.0] * len(z) | |
kwargs.update({'vace_context' : z, 'vace_context_scale' : context_scale, "ref_images_count": ref_images_count }) | |
if overlapped_latents != None : | |
overlapped_latents_size = overlapped_latents.shape[2] | |
extended_overlapped_latents = z[0][:16, :overlapped_latents_size + ref_images_count].clone().unsqueeze(0) | |
if prefix_frames_count > 0: | |
color_reference_frame = input_frames[0][:, prefix_frames_count -1:prefix_frames_count].clone() | |
target_shape = list(z0[0].shape) | |
target_shape[0] = int(target_shape[0] / 2) | |
lat_h, lat_w = target_shape[-2:] | |
height = self.vae_stride[1] * lat_h | |
width = self.vae_stride[2] * lat_w | |
else: | |
target_shape = (self.vae.model.z_dim, lat_frames + ref_images_count, height // self.vae_stride[1], width // self.vae_stride[2]) | |
if multitalk and audio_proj != None: | |
from wan.multitalk.multitalk import get_target_masks | |
audio_proj = [audio.to(self.dtype) for audio in audio_proj] | |
human_no = len(audio_proj[0]) | |
token_ref_target_masks = get_target_masks(human_no, lat_h, lat_w, height, width, face_scale = 0.05, bbox = speakers_bboxes).to(self.dtype) if human_no > 1 else None | |
if fantasy and audio_proj != None: | |
kwargs.update({ "audio_proj": audio_proj.to(self.dtype), "audio_context_lens": audio_context_lens, }) | |
if self._interrupt: | |
return None | |
expand_shape = [batch_size] + [-1] * len(target_shape) | |
# Ropes | |
if target_camera != None: | |
shape = list(target_shape[1:]) | |
shape[0] *= 2 | |
freqs = get_rotary_pos_embed(shape, enable_RIFLEx= False) | |
else: | |
freqs = get_rotary_pos_embed(target_shape[1:], enable_RIFLEx= enable_RIFLEx) | |
kwargs["freqs"] = freqs | |
# Steps Skipping | |
cache_type = self.model.enable_cache | |
if cache_type != None: | |
x_count = 3 if phantom or fantasy or multitalk else 2 | |
self.model.previous_residual = [None] * x_count | |
if cache_type == "tea": | |
self.model.compute_teacache_threshold(self.model.cache_start_step, timesteps, self.model.cache_multiplier) | |
else: | |
self.model.compute_magcache_threshold(self.model.cache_start_step, timesteps, self.model.cache_multiplier) | |
self.model.accumulated_err, self.model.accumulated_steps, self.model.accumulated_ratio = [0.0] * x_count, [0] * x_count, [1.0] * x_count | |
self.model.one_for_all = x_count > 2 | |
if callback != None: | |
callback(-1, None, True) | |
offload.shared_state["_chipmunk"] = False | |
chipmunk = offload.shared_state.get("_chipmunk", False) | |
if chipmunk: | |
self.model.setup_chipmunk() | |
# init denoising | |
updated_num_steps= len(timesteps) | |
if callback != None: | |
from wan.utils.loras_mutipliers import update_loras_slists | |
model_switch_step = updated_num_steps | |
for i, t in enumerate(timesteps): | |
if t <= switch_threshold: | |
model_switch_step = i | |
break | |
update_loras_slists(self.model, loras_slists, updated_num_steps, model_switch_step= model_switch_step) | |
callback(-1, None, True, override_num_inference_steps = updated_num_steps) | |
if sample_scheduler != None: | |
scheduler_kwargs = {} if isinstance(sample_scheduler, FlowMatchScheduler) else {"generator": seed_g} | |
# b, c, lat_f, lat_h, lat_w | |
latents = torch.randn(batch_size, *target_shape, dtype=torch.float32, device=self.device, generator=seed_g) | |
if apg_switch != 0: | |
apg_momentum = -0.75 | |
apg_norm_threshold = 55 | |
text_momentumbuffer = MomentumBuffer(apg_momentum) | |
audio_momentumbuffer = MomentumBuffer(apg_momentum) | |
guidance_switch_done = False | |
# denoising | |
trans = self.model | |
for i, t in enumerate(tqdm(timesteps)): | |
if not guidance_switch_done and t <= switch_threshold: | |
guide_scale = guide2_scale | |
if self.model2 is not None: trans = self.model2 | |
guidance_switch_done = True | |
offload.set_step_no_for_lora(trans, i) | |
timestep = torch.stack([t]) | |
kwargs.update({"t": timestep, "current_step": i}) | |
kwargs["slg_layers"] = slg_layers if int(slg_start * sampling_steps) <= i < int(slg_end * sampling_steps) else None | |
if denoising_strength < 1 and input_frames != None and i <= injection_denoising_step: | |
sigma = t / 1000 | |
noise = torch.randn(batch_size, *target_shape, dtype=torch.float32, device=self.device, generator=seed_g) | |
if inject_from_start: | |
new_latents = latents.clone() | |
new_latents[:,:, :source_latents.shape[1] ] = noise[:, :, :source_latents.shape[1] ] * sigma + (1 - sigma) * source_latents.unsqueeze(0) | |
for latent_no, keep_latent in enumerate(latent_keep_frames): | |
if not keep_latent: | |
new_latents[:, :, latent_no:latent_no+1 ] = latents[:, :, latent_no:latent_no+1] | |
latents = new_latents | |
new_latents = None | |
else: | |
latents = noise * sigma + (1 - sigma) * source_latents.unsqueeze(0) | |
noise = None | |
if extended_overlapped_latents != None: | |
latent_noise_factor = t / 1000 | |
latents[:, :, :extended_overlapped_latents.shape[2]] = extended_overlapped_latents * (1.0 - latent_noise_factor) + torch.randn_like(extended_overlapped_latents ) * latent_noise_factor | |
if vace: | |
overlap_noise_factor = overlap_noise / 1000 | |
for zz in z: | |
zz[0:16, ref_images_count:extended_overlapped_latents.shape[2] ] = extended_overlapped_latents[0, :, ref_images_count:] * (1.0 - overlap_noise_factor) + torch.randn_like(extended_overlapped_latents[0, :, ref_images_count:] ) * overlap_noise_factor | |
if target_camera != None: | |
latent_model_input = torch.cat([latents, source_latents.unsqueeze(0).expand(*expand_shape)], dim=2) # !!!! | |
else: | |
latent_model_input = latents | |
if phantom: | |
gen_args = { | |
"x" : ([ torch.cat([latent_model_input[:,:, :-ref_images_count], input_ref_images.unsqueeze(0).expand(*expand_shape)], dim=2) ] * 2 + | |
[ torch.cat([latent_model_input[:,:, :-ref_images_count], input_ref_images_neg.unsqueeze(0).expand(*expand_shape)], dim=2)]), | |
"context": [context, context_null, context_null] , | |
} | |
elif fantasy: | |
gen_args = { | |
"x" : [latent_model_input, latent_model_input, latent_model_input], | |
"context" : [context, context_null, context_null], | |
"audio_scale": [audio_scale, None, None ] | |
} | |
elif multitalk and audio_proj != None: | |
gen_args = { | |
"x" : [latent_model_input, latent_model_input, latent_model_input], | |
"context" : [context, context_null, context_null], | |
"multitalk_audio": [audio_proj, audio_proj, [torch.zeros_like(audio_proj[0][-1:]), torch.zeros_like(audio_proj[1][-1:])]], | |
"multitalk_masks": [token_ref_target_masks, token_ref_target_masks, None] | |
} | |
else: | |
gen_args = { | |
"x" : [latent_model_input, latent_model_input], | |
"context": [context, context_null] | |
} | |
if joint_pass and guide_scale > 1: | |
ret_values = trans( **gen_args , **kwargs) | |
if self._interrupt: | |
return None | |
else: | |
size = 1 if guide_scale == 1 else len(gen_args["x"]) | |
ret_values = [None] * size | |
for x_id in range(size): | |
sub_gen_args = {k : [v[x_id]] for k, v in gen_args.items() } | |
ret_values[x_id] = trans( **sub_gen_args, x_id= x_id , **kwargs)[0] | |
if self._interrupt: | |
return None | |
sub_gen_args = None | |
if guide_scale == 1: | |
noise_pred = ret_values[0] | |
elif phantom: | |
guide_scale_img= 5.0 | |
guide_scale_text= guide_scale #7.5 | |
pos_it, pos_i, neg = ret_values | |
noise_pred = neg + guide_scale_img * (pos_i - neg) + guide_scale_text * (pos_it - pos_i) | |
pos_it = pos_i = neg = None | |
elif fantasy: | |
noise_pred_cond, noise_pred_noaudio, noise_pred_uncond = ret_values | |
noise_pred = noise_pred_uncond + guide_scale * (noise_pred_noaudio - noise_pred_uncond) + audio_cfg_scale * (noise_pred_cond - noise_pred_noaudio) | |
noise_pred_noaudio = None | |
elif multitalk and audio_proj != None: | |
noise_pred_cond, noise_pred_drop_text, noise_pred_uncond = ret_values | |
if apg_switch != 0: | |
noise_pred = noise_pred_cond + (guide_scale - 1) * adaptive_projected_guidance(noise_pred_cond - noise_pred_drop_text, | |
noise_pred_cond, | |
momentum_buffer=text_momentumbuffer, | |
norm_threshold=apg_norm_threshold) \ | |
+ (audio_cfg_scale - 1) * adaptive_projected_guidance(noise_pred_drop_text - noise_pred_uncond, | |
noise_pred_cond, | |
momentum_buffer=audio_momentumbuffer, | |
norm_threshold=apg_norm_threshold) | |
else: | |
noise_pred = noise_pred_uncond + guide_scale * (noise_pred_cond - noise_pred_drop_text) + audio_cfg_scale * (noise_pred_drop_text - noise_pred_uncond) | |
noise_pred_uncond = noise_pred_cond = noise_pred_drop_text = None | |
else: | |
noise_pred_cond, noise_pred_uncond = ret_values | |
if apg_switch != 0: | |
noise_pred = noise_pred_cond + (guide_scale - 1) * adaptive_projected_guidance(noise_pred_cond - noise_pred_uncond, | |
noise_pred_cond, | |
momentum_buffer=text_momentumbuffer, | |
norm_threshold=apg_norm_threshold) | |
else: | |
noise_pred_text = noise_pred_cond | |
if cfg_star_switch: | |
# CFG Zero *. Thanks to https://github.com/WeichenFan/CFG-Zero-star/ | |
positive_flat = noise_pred_text.view(batch_size, -1) | |
negative_flat = noise_pred_uncond.view(batch_size, -1) | |
alpha = optimized_scale(positive_flat,negative_flat) | |
alpha = alpha.view(batch_size, 1, 1, 1) | |
if (i <= cfg_zero_step): | |
noise_pred = noise_pred_text*0. # it would be faster not to compute noise_pred... | |
else: | |
noise_pred_uncond *= alpha | |
noise_pred = noise_pred_uncond + guide_scale * (noise_pred_text - noise_pred_uncond) | |
ret_values = noise_pred_uncond = noise_pred_cond = noise_pred_text = neg = None | |
if sample_solver == "euler": | |
dt = timesteps[i] if i == len(timesteps)-1 else (timesteps[i] - timesteps[i + 1]) | |
dt = dt / self.num_timesteps | |
latents = latents - noise_pred * dt[:, None, None, None, None] | |
else: | |
latents = sample_scheduler.step( | |
noise_pred[:, :, :target_shape[1]], | |
t, | |
latents, | |
**scheduler_kwargs)[0] | |
if callback is not None: | |
latents_preview = latents | |
if vace and ref_images_count > 0: latents_preview = latents_preview[:, :, ref_images_count: ] | |
if trim_frames > 0: latents_preview= latents_preview[:, :,:-trim_frames] | |
if image_outputs: latents_preview= latents_preview[:, :,:1] | |
if len(latents_preview) > 1: latents_preview = latents_preview.transpose(0,2) | |
callback(i, latents_preview[0], False) | |
latents_preview = None | |
if vace and ref_images_count > 0: latents = latents[:, :, ref_images_count:] | |
if trim_frames > 0: latents= latents[:, :,:-trim_frames] | |
if return_latent_slice != None: | |
latent_slice = latents[:, :, return_latent_slice].clone() | |
x0 =latents.unbind(dim=0) | |
if chipmunk: | |
self.model.release_chipmunk() # need to add it at every exit when in prod | |
videos = self.vae.decode(x0, VAE_tile_size) | |
if image_outputs: | |
videos = torch.cat([video[:,:1] for video in videos], dim=1) if len(videos) > 1 else videos[0][:,:1] | |
else: | |
videos = videos[0] # return only first video | |
if color_correction_strength > 0 and prefix_frames_count > 0: | |
if vace and False: | |
# videos = match_and_blend_colors_with_mask(videos.unsqueeze(0), input_frames[0].unsqueeze(0), input_masks[0][:1].unsqueeze(0), color_correction_strength,copy_mode= "progressive_blend").squeeze(0) | |
videos = match_and_blend_colors_with_mask(videos.unsqueeze(0), input_frames[0].unsqueeze(0), input_masks[0][:1].unsqueeze(0), color_correction_strength,copy_mode= "reference").squeeze(0) | |
# videos = match_and_blend_colors_with_mask(videos.unsqueeze(0), videos.unsqueeze(0), input_masks[0][:1].unsqueeze(0), color_correction_strength,copy_mode= "reference").squeeze(0) | |
elif color_reference_frame is not None: | |
videos = match_and_blend_colors(videos.unsqueeze(0), color_reference_frame.unsqueeze(0), color_correction_strength).squeeze(0) | |
if return_latent_slice != None: | |
return { "x" : videos, "latent_slice" : latent_slice } | |
return videos | |
def adapt_vace_model(self, model): | |
modules_dict= { k: m for k, m in model.named_modules()} | |
for model_layer, vace_layer in model.vace_layers_mapping.items(): | |
module = modules_dict[f"vace_blocks.{vace_layer}"] | |
target = modules_dict[f"blocks.{model_layer}"] | |
setattr(target, "vace", module ) | |
delattr(model, "vace_blocks") | |
def query_model_def(model_type, model_def): | |
if "URLs2" in model_def: | |
return { "no_steps_skipping":True} | |
else: | |
return None |