|
import numpy as np |
|
import time |
|
import torch |
|
import torch.nn.functional as F |
|
import torchvision.transforms as T |
|
import io |
|
import base64 |
|
import random |
|
import math |
|
import os |
|
import re |
|
import json |
|
import importlib |
|
from PIL.PngImagePlugin import PngInfo |
|
try: |
|
import cv2 |
|
except: |
|
print("OpenCV not installed") |
|
pass |
|
from PIL import ImageGrab, ImageDraw, ImageFont, Image, ImageOps |
|
|
|
from nodes import MAX_RESOLUTION, SaveImage |
|
from comfy_extras.nodes_mask import ImageCompositeMasked |
|
from comfy.cli_args import args |
|
from comfy.utils import ProgressBar, common_upscale |
|
import folder_paths |
|
from comfy import model_management |
|
try: |
|
from server import PromptServer |
|
except: |
|
PromptServer = None |
|
from concurrent.futures import ThreadPoolExecutor |
|
|
|
script_directory = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) |
|
|
|
class ImagePass: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
}, |
|
"optional": { |
|
"image": ("IMAGE",), |
|
}, |
|
} |
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "passthrough" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Passes the image through without modifying it. |
|
""" |
|
|
|
def passthrough(self, image=None): |
|
return image, |
|
|
|
class ColorMatch: |
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"image_ref": ("IMAGE",), |
|
"image_target": ("IMAGE",), |
|
"method": ( |
|
[ |
|
'mkl', |
|
'hm', |
|
'reinhard', |
|
'mvgd', |
|
'hm-mvgd-hm', |
|
'hm-mkl-hm', |
|
], { |
|
"default": 'mkl' |
|
}), |
|
}, |
|
"optional": { |
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"multithread": ("BOOLEAN", {"default": True}), |
|
} |
|
} |
|
|
|
CATEGORY = "KJNodes/image" |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
RETURN_NAMES = ("image",) |
|
FUNCTION = "colormatch" |
|
DESCRIPTION = """ |
|
color-matcher enables color transfer across images which comes in handy for automatic |
|
color-grading of photographs, paintings and film sequences as well as light-field |
|
and stopmotion corrections. |
|
|
|
The methods behind the mappings are based on the approach from Reinhard et al., |
|
the Monge-Kantorovich Linearization (MKL) as proposed by Pitie et al. and our analytical solution |
|
to a Multi-Variate Gaussian Distribution (MVGD) transfer in conjunction with classical histogram |
|
matching. As shown below our HM-MVGD-HM compound outperforms existing methods. |
|
https://github.com/hahnec/color-matcher/ |
|
|
|
""" |
|
|
|
def colormatch(self, image_ref, image_target, method, strength=1.0, multithread=True): |
|
try: |
|
from color_matcher import ColorMatcher |
|
except: |
|
raise Exception("Can't import color-matcher, did you install requirements.txt? Manual install: pip install color-matcher") |
|
|
|
image_ref = image_ref.cpu() |
|
image_target = image_target.cpu() |
|
batch_size = image_target.size(0) |
|
|
|
images_target = image_target.squeeze() |
|
images_ref = image_ref.squeeze() |
|
|
|
image_ref_np = images_ref.numpy() |
|
images_target_np = images_target.numpy() |
|
|
|
def process(i): |
|
cm = ColorMatcher() |
|
image_target_np_i = images_target_np if batch_size == 1 else images_target[i].numpy() |
|
image_ref_np_i = image_ref_np if image_ref.size(0) == 1 else images_ref[i].numpy() |
|
try: |
|
image_result = cm.transfer(src=image_target_np_i, ref=image_ref_np_i, method=method) |
|
image_result = image_target_np_i + strength * (image_result - image_target_np_i) |
|
return torch.from_numpy(image_result) |
|
except Exception as e: |
|
print(f"Thread {i} error: {e}") |
|
return torch.from_numpy(image_target_np_i) |
|
|
|
if multithread and batch_size > 1: |
|
max_threads = min(os.cpu_count() or 1, batch_size) |
|
with ThreadPoolExecutor(max_workers=max_threads) as executor: |
|
out = list(executor.map(process, range(batch_size))) |
|
else: |
|
out = [process(i) for i in range(batch_size)] |
|
|
|
out = torch.stack(out, dim=0).to(torch.float32) |
|
out.clamp_(0, 1) |
|
return (out,) |
|
|
|
class SaveImageWithAlpha: |
|
def __init__(self): |
|
self.output_dir = folder_paths.get_output_directory() |
|
self.type = "output" |
|
self.prefix_append = "" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": |
|
{"images": ("IMAGE", ), |
|
"mask": ("MASK", ), |
|
"filename_prefix": ("STRING", {"default": "ComfyUI"})}, |
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, |
|
} |
|
|
|
RETURN_TYPES = () |
|
FUNCTION = "save_images_alpha" |
|
OUTPUT_NODE = True |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Saves an image and mask as .PNG with the mask as the alpha channel. |
|
""" |
|
|
|
def save_images_alpha(self, images, mask, filename_prefix="ComfyUI_image_with_alpha", prompt=None, extra_pnginfo=None): |
|
from PIL.PngImagePlugin import PngInfo |
|
filename_prefix += self.prefix_append |
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0]) |
|
results = list() |
|
if mask.dtype == torch.float16: |
|
mask = mask.to(torch.float32) |
|
def file_counter(): |
|
max_counter = 0 |
|
|
|
for existing_file in os.listdir(full_output_folder): |
|
|
|
match = re.fullmatch(fr"{filename}_(\d+)_?\.[a-zA-Z0-9]+", existing_file) |
|
if match: |
|
|
|
file_counter = int(match.group(1)) |
|
|
|
if file_counter > max_counter: |
|
max_counter = file_counter |
|
return max_counter |
|
|
|
for image, alpha in zip(images, mask): |
|
i = 255. * image.cpu().numpy() |
|
a = 255. * alpha.cpu().numpy() |
|
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) |
|
|
|
|
|
a_resized = Image.fromarray(a).resize(img.size, Image.LANCZOS) |
|
a_resized = np.clip(a_resized, 0, 255).astype(np.uint8) |
|
img.putalpha(Image.fromarray(a_resized, mode='L')) |
|
metadata = None |
|
if not args.disable_metadata: |
|
metadata = PngInfo() |
|
if prompt is not None: |
|
metadata.add_text("prompt", json.dumps(prompt)) |
|
if extra_pnginfo is not None: |
|
for x in extra_pnginfo: |
|
metadata.add_text(x, json.dumps(extra_pnginfo[x])) |
|
|
|
|
|
counter = file_counter() + 1 |
|
file = f"{filename}_{counter:05}.png" |
|
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4) |
|
results.append({ |
|
"filename": file, |
|
"subfolder": subfolder, |
|
"type": self.type |
|
}) |
|
|
|
return { "ui": { "images": results } } |
|
|
|
class ImageConcanate: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"image1": ("IMAGE",), |
|
"image2": ("IMAGE",), |
|
"direction": ( |
|
[ 'right', |
|
'down', |
|
'left', |
|
'up', |
|
], |
|
{ |
|
"default": 'right' |
|
}), |
|
"match_image_size": ("BOOLEAN", {"default": True}), |
|
}} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "concatenate" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Concatenates the image2 to image1 in the specified direction. |
|
""" |
|
|
|
def concatenate(self, image1, image2, direction, match_image_size, first_image_shape=None): |
|
|
|
batch_size1 = image1.shape[0] |
|
batch_size2 = image2.shape[0] |
|
|
|
if batch_size1 != batch_size2: |
|
|
|
max_batch_size = max(batch_size1, batch_size2) |
|
repeats1 = max_batch_size - batch_size1 |
|
repeats2 = max_batch_size - batch_size2 |
|
|
|
|
|
if repeats1 > 0: |
|
last_image1 = image1[-1].unsqueeze(0).repeat(repeats1, 1, 1, 1) |
|
image1 = torch.cat([image1.clone(), last_image1], dim=0) |
|
if repeats2 > 0: |
|
last_image2 = image2[-1].unsqueeze(0).repeat(repeats2, 1, 1, 1) |
|
image2 = torch.cat([image2.clone(), last_image2], dim=0) |
|
|
|
if match_image_size: |
|
|
|
target_shape = first_image_shape if first_image_shape is not None else image1.shape |
|
|
|
original_height = image2.shape[1] |
|
original_width = image2.shape[2] |
|
original_aspect_ratio = original_width / original_height |
|
|
|
if direction in ['left', 'right']: |
|
|
|
target_height = target_shape[1] |
|
target_width = int(target_height * original_aspect_ratio) |
|
elif direction in ['up', 'down']: |
|
|
|
target_width = target_shape[2] |
|
target_height = int(target_width / original_aspect_ratio) |
|
|
|
|
|
image2_for_upscale = image2.movedim(-1, 1) |
|
|
|
|
|
image2_resized = common_upscale(image2_for_upscale, target_width, target_height, "lanczos", "disabled") |
|
|
|
|
|
image2_resized = image2_resized.movedim(1, -1) |
|
else: |
|
image2_resized = image2 |
|
|
|
|
|
channels_image1 = image1.shape[-1] |
|
channels_image2 = image2_resized.shape[-1] |
|
|
|
if channels_image1 != channels_image2: |
|
if channels_image1 < channels_image2: |
|
|
|
alpha_channel = torch.ones((*image1.shape[:-1], channels_image2 - channels_image1), device=image1.device) |
|
image1 = torch.cat((image1, alpha_channel), dim=-1) |
|
else: |
|
|
|
alpha_channel = torch.ones((*image2_resized.shape[:-1], channels_image1 - channels_image2), device=image2_resized.device) |
|
image2_resized = torch.cat((image2_resized, alpha_channel), dim=-1) |
|
|
|
|
|
|
|
if direction == 'right': |
|
concatenated_image = torch.cat((image1, image2_resized), dim=2) |
|
elif direction == 'down': |
|
concatenated_image = torch.cat((image1, image2_resized), dim=1) |
|
elif direction == 'left': |
|
concatenated_image = torch.cat((image2_resized, image1), dim=2) |
|
elif direction == 'up': |
|
concatenated_image = torch.cat((image2_resized, image1), dim=1) |
|
return concatenated_image, |
|
|
|
import torch |
|
|
|
class ImageConcatFromBatch: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"images": ("IMAGE",), |
|
"num_columns": ("INT", {"default": 3, "min": 1, "max": 255, "step": 1}), |
|
"match_image_size": ("BOOLEAN", {"default": False}), |
|
"max_resolution": ("INT", {"default": 4096}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "concat" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Concatenates images from a batch into a grid with a specified number of columns. |
|
""" |
|
|
|
def concat(self, images, num_columns, match_image_size, max_resolution): |
|
|
|
batch_size, height, width, channels = images.shape |
|
num_rows = (batch_size + num_columns - 1) // num_columns |
|
|
|
print(f"Initial dimensions: batch_size={batch_size}, height={height}, width={width}, channels={channels}") |
|
print(f"num_rows={num_rows}, num_columns={num_columns}") |
|
|
|
if match_image_size: |
|
target_shape = images[0].shape |
|
|
|
resized_images = [] |
|
for image in images: |
|
original_height = image.shape[0] |
|
original_width = image.shape[1] |
|
original_aspect_ratio = original_width / original_height |
|
|
|
if original_aspect_ratio > 1: |
|
target_height = target_shape[0] |
|
target_width = int(target_height * original_aspect_ratio) |
|
else: |
|
target_width = target_shape[1] |
|
target_height = int(target_width / original_aspect_ratio) |
|
|
|
print(f"Resizing image from ({original_height}, {original_width}) to ({target_height}, {target_width})") |
|
|
|
|
|
resized_image = common_upscale(image.movedim(-1, 0), target_width, target_height, "lanczos", "disabled") |
|
resized_image = resized_image.movedim(0, -1) |
|
resized_images.append(resized_image) |
|
|
|
|
|
images = torch.stack(resized_images) |
|
|
|
height, width = target_shape[:2] |
|
|
|
|
|
grid_height = num_rows * height |
|
grid_width = num_columns * width |
|
|
|
print(f"Grid dimensions before scaling: grid_height={grid_height}, grid_width={grid_width}") |
|
|
|
|
|
scale_factor = min(max_resolution / grid_height, max_resolution / grid_width, 1.0) |
|
|
|
|
|
scaled_height = height * scale_factor |
|
scaled_width = width * scale_factor |
|
|
|
|
|
height = max(1, int(round(scaled_height / 8) * 8)) |
|
width = max(1, int(round(scaled_width / 8) * 8)) |
|
|
|
if abs(scaled_height - height) > 4: |
|
height = max(1, int(round((scaled_height + 4) / 8) * 8)) |
|
if abs(scaled_width - width) > 4: |
|
width = max(1, int(round((scaled_width + 4) / 8) * 8)) |
|
|
|
|
|
grid_height = num_rows * height |
|
grid_width = num_columns * width |
|
print(f"Grid dimensions after scaling: grid_height={grid_height}, grid_width={grid_width}") |
|
print(f"Final image dimensions: height={height}, width={width}") |
|
|
|
grid = torch.zeros((grid_height, grid_width, channels), dtype=images.dtype) |
|
|
|
for idx, image in enumerate(images): |
|
resized_image = torch.nn.functional.interpolate(image.unsqueeze(0).permute(0, 3, 1, 2), size=(height, width), mode="bilinear").squeeze().permute(1, 2, 0) |
|
row = idx // num_columns |
|
col = idx % num_columns |
|
grid[row*height:(row+1)*height, col*width:(col+1)*width, :] = resized_image |
|
|
|
return grid.unsqueeze(0), |
|
|
|
|
|
class ImageGridComposite2x2: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"image1": ("IMAGE",), |
|
"image2": ("IMAGE",), |
|
"image3": ("IMAGE",), |
|
"image4": ("IMAGE",), |
|
}} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "compositegrid" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Concatenates the 4 input images into a 2x2 grid. |
|
""" |
|
|
|
def compositegrid(self, image1, image2, image3, image4): |
|
top_row = torch.cat((image1, image2), dim=2) |
|
bottom_row = torch.cat((image3, image4), dim=2) |
|
grid = torch.cat((top_row, bottom_row), dim=1) |
|
return (grid,) |
|
|
|
class ImageGridComposite3x3: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"image1": ("IMAGE",), |
|
"image2": ("IMAGE",), |
|
"image3": ("IMAGE",), |
|
"image4": ("IMAGE",), |
|
"image5": ("IMAGE",), |
|
"image6": ("IMAGE",), |
|
"image7": ("IMAGE",), |
|
"image8": ("IMAGE",), |
|
"image9": ("IMAGE",), |
|
}} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "compositegrid" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Concatenates the 9 input images into a 3x3 grid. |
|
""" |
|
|
|
def compositegrid(self, image1, image2, image3, image4, image5, image6, image7, image8, image9): |
|
top_row = torch.cat((image1, image2, image3), dim=2) |
|
mid_row = torch.cat((image4, image5, image6), dim=2) |
|
bottom_row = torch.cat((image7, image8, image9), dim=2) |
|
grid = torch.cat((top_row, mid_row, bottom_row), dim=1) |
|
return (grid,) |
|
|
|
class ImageBatchTestPattern: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"batch_size": ("INT", {"default": 1,"min": 1, "max": 255, "step": 1}), |
|
"start_from": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}), |
|
"text_x": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}), |
|
"text_y": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}), |
|
"width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}), |
|
"height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}), |
|
"font": (folder_paths.get_filename_list("kjnodes_fonts"), ), |
|
"font_size": ("INT", {"default": 255,"min": 8, "max": 4096, "step": 1}), |
|
}} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "generatetestpattern" |
|
CATEGORY = "KJNodes/text" |
|
|
|
def generatetestpattern(self, batch_size, font, font_size, start_from, width, height, text_x, text_y): |
|
out = [] |
|
|
|
numbers = np.arange(start_from, start_from + batch_size) |
|
font_path = folder_paths.get_full_path("kjnodes_fonts", font) |
|
|
|
for number in numbers: |
|
|
|
image = Image.new("RGB", (width, height), color='black') |
|
draw = ImageDraw.Draw(image) |
|
|
|
|
|
font_color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) |
|
|
|
font = ImageFont.truetype(font_path, font_size) |
|
|
|
|
|
text = str(number) |
|
|
|
try: |
|
draw.text((text_x, text_y), text, font=font, fill=font_color, features=['-liga']) |
|
except: |
|
draw.text((text_x, text_y), text, font=font, fill=font_color,) |
|
|
|
|
|
image_np = np.array(image).astype(np.float32) / 255.0 |
|
image_tensor = torch.from_numpy(image_np).unsqueeze(0) |
|
out.append(image_tensor) |
|
out_tensor = torch.cat(out, dim=0) |
|
|
|
return (out_tensor,) |
|
|
|
class ImageGrabPIL: |
|
|
|
@classmethod |
|
def IS_CHANGED(cls): |
|
|
|
return |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
RETURN_NAMES = ("image",) |
|
FUNCTION = "screencap" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Captures an area specified by screen coordinates. |
|
Can be used for realtime diffusion with autoqueue. |
|
""" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"x": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}), |
|
"y": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}), |
|
"width": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}), |
|
"height": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}), |
|
"num_frames": ("INT", {"default": 1,"min": 1, "max": 255, "step": 1}), |
|
"delay": ("FLOAT", {"default": 0.1,"min": 0.0, "max": 10.0, "step": 0.01}), |
|
}, |
|
} |
|
|
|
def screencap(self, x, y, width, height, num_frames, delay): |
|
start_time = time.time() |
|
captures = [] |
|
bbox = (x, y, x + width, y + height) |
|
|
|
for _ in range(num_frames): |
|
|
|
screen_capture = ImageGrab.grab(bbox=bbox) |
|
screen_capture_torch = torch.from_numpy(np.array(screen_capture, dtype=np.float32) / 255.0).unsqueeze(0) |
|
captures.append(screen_capture_torch) |
|
|
|
|
|
if num_frames > 1: |
|
time.sleep(delay) |
|
|
|
elapsed_time = time.time() - start_time |
|
print(f"screengrab took {elapsed_time} seconds.") |
|
|
|
return (torch.cat(captures, dim=0),) |
|
|
|
class Screencap_mss: |
|
|
|
@classmethod |
|
def IS_CHANGED(s, **kwargs): |
|
return float("NaN") |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
RETURN_NAMES = ("image",) |
|
FUNCTION = "screencap" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Captures an area specified by screen coordinates. |
|
Can be used for realtime diffusion with autoqueue. |
|
""" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"x": ("INT", {"default": 0,"min": 0, "max": 10000, "step": 1}), |
|
"y": ("INT", {"default": 0,"min": 0, "max": 10000, "step": 1}), |
|
"width": ("INT", {"default": 512,"min": 0, "max": 10000, "step": 1}), |
|
"height": ("INT", {"default": 512,"min": 0, "max": 10000, "step": 1}), |
|
"num_frames": ("INT", {"default": 1,"min": 1, "max": 255, "step": 1}), |
|
"delay": ("FLOAT", {"default": 0.1,"min": 0.0, "max": 10.0, "step": 0.01}), |
|
}, |
|
} |
|
|
|
def screencap(self, x, y, width, height, num_frames, delay): |
|
from mss import mss |
|
captures = [] |
|
with mss() as sct: |
|
bbox = {'top': y, 'left': x, 'width': width, 'height': height} |
|
|
|
for _ in range(num_frames): |
|
sct_img = sct.grab(bbox) |
|
img_np = np.array(sct_img) |
|
img_torch = torch.from_numpy(img_np[..., [2, 1, 0]]).float() / 255.0 |
|
captures.append(img_torch) |
|
|
|
if num_frames > 1: |
|
time.sleep(delay) |
|
|
|
return (torch.stack(captures, 0),) |
|
|
|
class WebcamCaptureCV2: |
|
|
|
@classmethod |
|
def IS_CHANGED(cls): |
|
return |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
RETURN_NAMES = ("image",) |
|
FUNCTION = "capture" |
|
CATEGORY = "KJNodes/experimental" |
|
DESCRIPTION = """ |
|
Captures a frame from a webcam using CV2. |
|
Can be used for realtime diffusion with autoqueue. |
|
""" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"x": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}), |
|
"y": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}), |
|
"width": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}), |
|
"height": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}), |
|
"cam_index": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}), |
|
"release": ("BOOLEAN", {"default": False}), |
|
}, |
|
} |
|
|
|
def capture(self, x, y, cam_index, width, height, release): |
|
|
|
if not hasattr(self, "cap") or self.cap is None or self.current_cam_index != cam_index: |
|
if hasattr(self, "cap") and self.cap is not None: |
|
self.cap.release() |
|
self.current_cam_index = cam_index |
|
self.cap = cv2.VideoCapture(cam_index) |
|
try: |
|
self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, width) |
|
self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height) |
|
except: |
|
pass |
|
if not self.cap.isOpened(): |
|
raise Exception("Could not open webcam") |
|
|
|
ret, frame = self.cap.read() |
|
if not ret: |
|
raise Exception("Failed to capture image from webcam") |
|
|
|
|
|
frame = frame[y:y+height, x:x+width] |
|
img_torch = torch.from_numpy(frame[..., [2, 1, 0]]).float() / 255.0 |
|
|
|
if release: |
|
self.cap.release() |
|
self.cap = None |
|
|
|
return (img_torch.unsqueeze(0),) |
|
|
|
class AddLabel: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"image":("IMAGE",), |
|
"text_x": ("INT", {"default": 10, "min": 0, "max": 4096, "step": 1}), |
|
"text_y": ("INT", {"default": 2, "min": 0, "max": 4096, "step": 1}), |
|
"height": ("INT", {"default": 48, "min": -1, "max": 4096, "step": 1}), |
|
"font_size": ("INT", {"default": 32, "min": 0, "max": 4096, "step": 1}), |
|
"font_color": ("STRING", {"default": "white"}), |
|
"label_color": ("STRING", {"default": "black"}), |
|
"font": (folder_paths.get_filename_list("kjnodes_fonts"), ), |
|
"text": ("STRING", {"default": "Text"}), |
|
"direction": ( |
|
[ 'up', |
|
'down', |
|
'left', |
|
'right', |
|
'overlay' |
|
], |
|
{ |
|
"default": 'up' |
|
}), |
|
}, |
|
"optional":{ |
|
"caption": ("STRING", {"default": "", "forceInput": True}), |
|
} |
|
} |
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "addlabel" |
|
CATEGORY = "KJNodes/text" |
|
DESCRIPTION = """ |
|
Creates a new with the given text, and concatenates it to |
|
either above or below the input image. |
|
Note that this changes the input image's height! |
|
Fonts are loaded from this folder: |
|
ComfyUI/custom_nodes/ComfyUI-KJNodes/fonts |
|
""" |
|
|
|
def addlabel(self, image, text_x, text_y, text, height, font_size, font_color, label_color, font, direction, caption=""): |
|
batch_size = image.shape[0] |
|
width = image.shape[2] |
|
|
|
font_path = os.path.join(script_directory, "fonts", "TTNorms-Black.otf") if font == "TTNorms-Black.otf" else folder_paths.get_full_path("kjnodes_fonts", font) |
|
|
|
def process_image(input_image, caption_text): |
|
font = ImageFont.truetype(font_path, font_size) |
|
words = caption_text.split() |
|
lines = [] |
|
current_line = [] |
|
current_line_width = 0 |
|
|
|
for word in words: |
|
word_width = font.getbbox(word)[2] |
|
if current_line_width + word_width <= width - 2 * text_x: |
|
current_line.append(word) |
|
current_line_width += word_width + font.getbbox(" ")[2] |
|
else: |
|
lines.append(" ".join(current_line)) |
|
current_line = [word] |
|
current_line_width = word_width |
|
|
|
if current_line: |
|
lines.append(" ".join(current_line)) |
|
|
|
if direction == 'overlay': |
|
pil_image = Image.fromarray((input_image.cpu().numpy() * 255).astype(np.uint8)) |
|
else: |
|
if height == -1: |
|
|
|
margin = 8 |
|
required_height = (text_y + len(lines) * font_size) + margin |
|
pil_image = Image.new("RGB", (width, required_height), label_color) |
|
else: |
|
|
|
label_image = Image.new("RGB", (width, height), label_color) |
|
pil_image = label_image |
|
|
|
draw = ImageDraw.Draw(pil_image) |
|
|
|
|
|
y_offset = text_y |
|
for line in lines: |
|
try: |
|
draw.text((text_x, y_offset), line, font=font, fill=font_color, features=['-liga']) |
|
except: |
|
draw.text((text_x, y_offset), line, font=font, fill=font_color) |
|
y_offset += font_size |
|
|
|
processed_image = torch.from_numpy(np.array(pil_image).astype(np.float32) / 255.0).unsqueeze(0) |
|
return processed_image |
|
|
|
if caption == "": |
|
processed_images = [process_image(img, text) for img in image] |
|
else: |
|
assert len(caption) == batch_size, f"Number of captions {(len(caption))} does not match number of images" |
|
processed_images = [process_image(img, cap) for img, cap in zip(image, caption)] |
|
processed_batch = torch.cat(processed_images, dim=0) |
|
|
|
|
|
if direction == 'down': |
|
combined_images = torch.cat((image, processed_batch), dim=1) |
|
elif direction == 'up': |
|
combined_images = torch.cat((processed_batch, image), dim=1) |
|
elif direction == 'left': |
|
processed_batch = torch.rot90(processed_batch, 3, (2, 3)).permute(0, 3, 1, 2) |
|
combined_images = torch.cat((processed_batch, image), dim=2) |
|
elif direction == 'right': |
|
processed_batch = torch.rot90(processed_batch, 3, (2, 3)).permute(0, 3, 1, 2) |
|
combined_images = torch.cat((image, processed_batch), dim=2) |
|
else: |
|
combined_images = processed_batch |
|
|
|
return (combined_images,) |
|
|
|
class GetImageSizeAndCount: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"image": ("IMAGE",), |
|
}} |
|
|
|
RETURN_TYPES = ("IMAGE","INT", "INT", "INT",) |
|
RETURN_NAMES = ("image", "width", "height", "count",) |
|
FUNCTION = "getsize" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Returns width, height and batch size of the image, |
|
and passes it through unchanged. |
|
|
|
""" |
|
|
|
def getsize(self, image): |
|
width = image.shape[2] |
|
height = image.shape[1] |
|
count = image.shape[0] |
|
return {"ui": { |
|
"text": [f"{count}x{width}x{height}"]}, |
|
"result": (image, width, height, count) |
|
} |
|
|
|
class GetLatentSizeAndCount: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"latent": ("LATENT",), |
|
}} |
|
|
|
RETURN_TYPES = ("LATENT","INT", "INT", "INT", "INT", "INT") |
|
RETURN_NAMES = ("latent", "batch_size", "channels", "frames", "width", "height") |
|
FUNCTION = "getsize" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Returns latent tensor dimensions, |
|
and passes the latent through unchanged. |
|
|
|
""" |
|
def getsize(self, latent): |
|
if len(latent["samples"].shape) == 5: |
|
B, C, T, H, W = latent["samples"].shape |
|
elif len(latent["samples"].shape) == 4: |
|
B, C, H, W = latent["samples"].shape |
|
T = 0 |
|
else: |
|
raise ValueError("Invalid latent shape") |
|
|
|
return {"ui": { |
|
"text": [f"{B}x{C}x{T}x{H}x{W}"]}, |
|
"result": (latent, B, C, T, H, W) |
|
} |
|
|
|
class ImageBatchRepeatInterleaving: |
|
|
|
RETURN_TYPES = ("IMAGE", "MASK",) |
|
FUNCTION = "repeat" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Repeats each image in a batch by the specified number of times. |
|
Example batch of 5 images: 0, 1 ,2, 3, 4 |
|
with repeats 2 becomes batch of 10 images: 0, 0, 1, 1, 2, 2, 3, 3, 4, 4 |
|
""" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"images": ("IMAGE",), |
|
"repeats": ("INT", {"default": 1, "min": 1, "max": 4096}), |
|
}, |
|
"optional": { |
|
"mask": ("MASK",), |
|
} |
|
} |
|
|
|
def repeat(self, images, repeats, mask=None): |
|
original_count = images.shape[0] |
|
total_count = original_count * repeats |
|
|
|
repeated_images = torch.repeat_interleave(images, repeats=repeats, dim=0) |
|
if mask is not None: |
|
mask = torch.repeat_interleave(mask, repeats=repeats, dim=0) |
|
else: |
|
mask = torch.zeros((total_count, images.shape[1], images.shape[2]), |
|
device=images.device, dtype=images.dtype) |
|
for i in range(original_count): |
|
mask[i * repeats] = 1.0 |
|
|
|
print("mask shape", mask.shape) |
|
return (repeated_images, mask) |
|
|
|
class ImageUpscaleWithModelBatched: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "upscale_model": ("UPSCALE_MODEL",), |
|
"images": ("IMAGE",), |
|
"per_batch": ("INT", {"default": 16, "min": 1, "max": 4096, "step": 1}), |
|
}} |
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "upscale" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Same as ComfyUI native model upscaling node, |
|
but allows setting sub-batches for reduced VRAM usage. |
|
""" |
|
def upscale(self, upscale_model, images, per_batch): |
|
|
|
device = model_management.get_torch_device() |
|
upscale_model.to(device) |
|
in_img = images.movedim(-1,-3) |
|
|
|
steps = in_img.shape[0] |
|
pbar = ProgressBar(steps) |
|
t = [] |
|
|
|
for start_idx in range(0, in_img.shape[0], per_batch): |
|
sub_images = upscale_model(in_img[start_idx:start_idx+per_batch].to(device)) |
|
t.append(sub_images.cpu()) |
|
|
|
batch_count = sub_images.shape[0] |
|
|
|
pbar.update(batch_count) |
|
upscale_model.cpu() |
|
|
|
t = torch.cat(t, dim=0).permute(0, 2, 3, 1).cpu() |
|
|
|
return (t,) |
|
|
|
class ImageNormalize_Neg1_To_1: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"images": ("IMAGE",), |
|
|
|
}} |
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "normalize" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Normalize the images to be in the range [-1, 1] |
|
""" |
|
|
|
def normalize(self,images): |
|
images = images * 2.0 - 1.0 |
|
return (images,) |
|
|
|
class RemapImageRange: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"image": ("IMAGE",), |
|
"min": ("FLOAT", {"default": 0.0,"min": -10.0, "max": 1.0, "step": 0.01}), |
|
"max": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 10.0, "step": 0.01}), |
|
"clamp": ("BOOLEAN", {"default": True}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "remap" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Remaps the image values to the specified range. |
|
""" |
|
|
|
def remap(self, image, min, max, clamp): |
|
if image.dtype == torch.float16: |
|
image = image.to(torch.float32) |
|
image = min + image * (max - min) |
|
if clamp: |
|
image = torch.clamp(image, min=0.0, max=1.0) |
|
return (image, ) |
|
|
|
class SplitImageChannels: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"image": ("IMAGE",), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE", "MASK") |
|
RETURN_NAMES = ("red", "green", "blue", "mask") |
|
FUNCTION = "split" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Splits image channels into images where the selected channel |
|
is repeated for all channels, and the alpha as a mask. |
|
""" |
|
|
|
def split(self, image): |
|
red = image[:, :, :, 0:1] |
|
green = image[:, :, :, 1:2] |
|
blue = image[:, :, :, 2:3] |
|
alpha = image[:, :, :, 3:4] |
|
alpha = alpha.squeeze(-1) |
|
|
|
|
|
red = torch.cat([red, red, red], dim=3) |
|
green = torch.cat([green, green, green], dim=3) |
|
blue = torch.cat([blue, blue, blue], dim=3) |
|
return (red, green, blue, alpha) |
|
|
|
class MergeImageChannels: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"red": ("IMAGE",), |
|
"green": ("IMAGE",), |
|
"blue": ("IMAGE",), |
|
|
|
}, |
|
"optional": { |
|
"alpha": ("MASK", {"default": None}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
RETURN_NAMES = ("image",) |
|
FUNCTION = "merge" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Merges channel data into an image. |
|
""" |
|
|
|
def merge(self, red, green, blue, alpha=None): |
|
image = torch.stack([ |
|
red[..., 0, None], |
|
green[..., 1, None], |
|
blue[..., 2, None] |
|
], dim=-1) |
|
image = image.squeeze(-2) |
|
if alpha is not None: |
|
image = torch.cat([image, alpha.unsqueeze(-1)], dim=-1) |
|
return (image,) |
|
|
|
class ImagePadForOutpaintMasked: |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), |
|
"top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), |
|
"right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), |
|
"bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), |
|
"feathering": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), |
|
}, |
|
"optional": { |
|
"mask": ("MASK",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "MASK") |
|
FUNCTION = "expand_image" |
|
|
|
CATEGORY = "image" |
|
|
|
def expand_image(self, image, left, top, right, bottom, feathering, mask=None): |
|
if mask is not None: |
|
if torch.allclose(mask, torch.zeros_like(mask)): |
|
print("Warning: The incoming mask is fully black. Handling it as None.") |
|
mask = None |
|
B, H, W, C = image.size() |
|
|
|
new_image = torch.ones( |
|
(B, H + top + bottom, W + left + right, C), |
|
dtype=torch.float32, |
|
) * 0.5 |
|
|
|
new_image[:, top:top + H, left:left + W, :] = image |
|
|
|
if mask is None: |
|
new_mask = torch.ones( |
|
(B, H + top + bottom, W + left + right), |
|
dtype=torch.float32, |
|
) |
|
|
|
t = torch.zeros( |
|
(B, H, W), |
|
dtype=torch.float32 |
|
) |
|
else: |
|
|
|
mask = F.pad(mask, (left, right, top, bottom), mode='constant', value=0) |
|
mask = 1 - mask |
|
t = torch.zeros_like(mask) |
|
|
|
if feathering > 0 and feathering * 2 < H and feathering * 2 < W: |
|
|
|
for i in range(H): |
|
for j in range(W): |
|
dt = i if top != 0 else H |
|
db = H - i if bottom != 0 else H |
|
|
|
dl = j if left != 0 else W |
|
dr = W - j if right != 0 else W |
|
|
|
d = min(dt, db, dl, dr) |
|
|
|
if d >= feathering: |
|
continue |
|
|
|
v = (feathering - d) / feathering |
|
|
|
if mask is None: |
|
t[:, i, j] = v * v |
|
else: |
|
t[:, top + i, left + j] = v * v |
|
|
|
if mask is None: |
|
new_mask[:, top:top + H, left:left + W] = t |
|
return (new_image, new_mask,) |
|
else: |
|
return (new_image, mask,) |
|
|
|
class ImagePadForOutpaintTargetSize: |
|
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"target_width": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), |
|
"target_height": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), |
|
"feathering": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), |
|
"upscale_method": (s.upscale_methods,), |
|
}, |
|
"optional": { |
|
"mask": ("MASK",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "MASK") |
|
FUNCTION = "expand_image" |
|
|
|
CATEGORY = "image" |
|
|
|
def expand_image(self, image, target_width, target_height, feathering, upscale_method, mask=None): |
|
B, H, W, C = image.size() |
|
new_height = H |
|
new_width = W |
|
|
|
scaling_factor = min(target_width / W, target_height / H) |
|
|
|
|
|
if scaling_factor < 1: |
|
image = image.movedim(-1,1) |
|
|
|
new_width = int(W * scaling_factor) |
|
new_height = int(H * scaling_factor) |
|
|
|
|
|
image_scaled = common_upscale(image, new_width, new_height, upscale_method, "disabled").movedim(1,-1) |
|
if mask is not None: |
|
mask_scaled = mask.unsqueeze(0) |
|
mask_scaled = F.interpolate(mask_scaled, size=(new_height, new_width), mode="nearest") |
|
mask_scaled = mask_scaled.squeeze(0) |
|
else: |
|
mask_scaled = mask |
|
else: |
|
|
|
image_scaled = image |
|
mask_scaled = mask |
|
|
|
|
|
pad_top = max(0, (target_height - new_height) // 2) |
|
pad_bottom = max(0, target_height - new_height - pad_top) |
|
pad_left = max(0, (target_width - new_width) // 2) |
|
pad_right = max(0, target_width - new_width - pad_left) |
|
|
|
|
|
return ImagePadForOutpaintMasked.expand_image(self, image_scaled, pad_left, pad_top, pad_right, pad_bottom, feathering, mask_scaled) |
|
|
|
class ImagePrepForICLora: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"reference_image": ("IMAGE",), |
|
"output_width": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}), |
|
"output_height": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}), |
|
"border_width": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 1}), |
|
}, |
|
"optional": { |
|
"latent_image": ("IMAGE",), |
|
"latent_mask": ("MASK",), |
|
"reference_mask": ("MASK",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "MASK") |
|
FUNCTION = "expand_image" |
|
|
|
CATEGORY = "image" |
|
|
|
def expand_image(self, reference_image, output_width, output_height, border_width, latent_image=None, reference_mask=None, latent_mask=None): |
|
|
|
if reference_mask is not None: |
|
if torch.allclose(reference_mask, torch.zeros_like(reference_mask)): |
|
print("Warning: The incoming mask is fully black. Handling it as None.") |
|
reference_mask = None |
|
image = reference_image |
|
if latent_image is not None: |
|
if image.shape[0] != latent_image.shape[0]: |
|
image = image.repeat(latent_image.shape[0], 1, 1, 1) |
|
B, H, W, C = image.size() |
|
|
|
|
|
if reference_mask is not None: |
|
resized_mask = torch.nn.functional.interpolate( |
|
reference_mask.unsqueeze(1), |
|
size=(H, W), |
|
mode='nearest' |
|
).squeeze(1) |
|
print(resized_mask.shape) |
|
image = image * resized_mask.unsqueeze(-1) |
|
|
|
|
|
new_width = int((W / H) * output_height) |
|
|
|
|
|
resized_image = common_upscale(image.movedim(-1,1), new_width, output_height, "lanczos", "disabled").movedim(1,-1) |
|
|
|
|
|
if latent_image is None: |
|
pad_image = torch.zeros((B, output_height, output_width, C), device=image.device) |
|
else: |
|
resized_latent_image = common_upscale(latent_image.movedim(-1,1), output_width, output_height, "lanczos", "disabled").movedim(1,-1) |
|
pad_image = resized_latent_image |
|
if latent_mask is not None: |
|
resized_latent_mask = torch.nn.functional.interpolate( |
|
latent_mask.unsqueeze(1), |
|
size=(pad_image.shape[1], pad_image.shape[2]), |
|
mode='nearest' |
|
).squeeze(1) |
|
|
|
if border_width > 0: |
|
border = torch.zeros((B, output_height, border_width, C), device=image.device) |
|
padded_image = torch.cat((resized_image, border, pad_image), dim=2) |
|
if latent_mask is not None: |
|
padded_mask = torch.zeros((B, padded_image.shape[1], padded_image.shape[2]), device=image.device) |
|
padded_mask[:, :, (new_width + border_width):] = resized_latent_mask |
|
else: |
|
padded_mask = torch.ones((B, padded_image.shape[1], padded_image.shape[2]), device=image.device) |
|
padded_mask[:, :, :new_width + border_width] = 0 |
|
else: |
|
padded_image = torch.cat((resized_image, pad_image), dim=2) |
|
if latent_mask is not None: |
|
padded_mask = torch.zeros((B, padded_image.shape[1], padded_image.shape[2]), device=image.device) |
|
padded_mask[:, :, new_width:] = resized_latent_mask |
|
else: |
|
padded_mask = torch.ones((B, padded_image.shape[1], padded_image.shape[2]), device=image.device) |
|
padded_mask[:, :, :new_width] = 0 |
|
|
|
return (padded_image, padded_mask) |
|
|
|
|
|
class ImageAndMaskPreview(SaveImage): |
|
def __init__(self): |
|
self.output_dir = folder_paths.get_temp_directory() |
|
self.type = "temp" |
|
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5)) |
|
self.compress_level = 4 |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"mask_opacity": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
"mask_color": ("STRING", {"default": "255, 255, 255"}), |
|
"pass_through": ("BOOLEAN", {"default": False}), |
|
}, |
|
"optional": { |
|
"image": ("IMAGE",), |
|
"mask": ("MASK",), |
|
}, |
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, |
|
} |
|
RETURN_TYPES = ("IMAGE",) |
|
RETURN_NAMES = ("composite",) |
|
FUNCTION = "execute" |
|
CATEGORY = "KJNodes/masking" |
|
DESCRIPTION = """ |
|
Preview an image or a mask, when both inputs are used |
|
composites the mask on top of the image. |
|
with pass_through on the preview is disabled and the |
|
composite is returned from the composite slot instead, |
|
this allows for the preview to be passed for video combine |
|
nodes for example. |
|
""" |
|
|
|
def execute(self, mask_opacity, mask_color, pass_through, filename_prefix="ComfyUI", image=None, mask=None, prompt=None, extra_pnginfo=None): |
|
if mask is not None and image is None: |
|
preview = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3) |
|
elif mask is None and image is not None: |
|
preview = image |
|
elif mask is not None and image is not None: |
|
mask_adjusted = mask * mask_opacity |
|
mask_image = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3).clone() |
|
|
|
if ',' in mask_color: |
|
color_list = np.clip([int(channel) for channel in mask_color.split(',')], 0, 255) |
|
else: |
|
mask_color = mask_color.lstrip('#') |
|
color_list = [int(mask_color[i:i+2], 16) for i in (0, 2, 4)] |
|
mask_image[:, :, :, 0] = color_list[0] / 255 |
|
mask_image[:, :, :, 1] = color_list[1] / 255 |
|
mask_image[:, :, :, 2] = color_list[2] / 255 |
|
|
|
preview, = ImageCompositeMasked.composite(self, image, mask_image, 0, 0, True, mask_adjusted) |
|
if pass_through: |
|
return (preview, ) |
|
return(self.save_images(preview, filename_prefix, prompt, extra_pnginfo)) |
|
|
|
def crossfade(images_1, images_2, alpha): |
|
crossfade = (1 - alpha) * images_1 + alpha * images_2 |
|
return crossfade |
|
def ease_in(t): |
|
return t * t |
|
def ease_out(t): |
|
return 1 - (1 - t) * (1 - t) |
|
def ease_in_out(t): |
|
return 3 * t * t - 2 * t * t * t |
|
def bounce(t): |
|
if t < 0.5: |
|
return ease_out(t * 2) * 0.5 |
|
else: |
|
return ease_in((t - 0.5) * 2) * 0.5 + 0.5 |
|
def elastic(t): |
|
return math.sin(13 * math.pi / 2 * t) * math.pow(2, 10 * (t - 1)) |
|
def glitchy(t): |
|
return t + 0.1 * math.sin(40 * t) |
|
def exponential_ease_out(t): |
|
return 1 - (1 - t) ** 4 |
|
|
|
easing_functions = { |
|
"linear": lambda t: t, |
|
"ease_in": ease_in, |
|
"ease_out": ease_out, |
|
"ease_in_out": ease_in_out, |
|
"bounce": bounce, |
|
"elastic": elastic, |
|
"glitchy": glitchy, |
|
"exponential_ease_out": exponential_ease_out, |
|
} |
|
|
|
class CrossFadeImages: |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "crossfadeimages" |
|
CATEGORY = "KJNodes/image" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"images_1": ("IMAGE",), |
|
"images_2": ("IMAGE",), |
|
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],), |
|
"transition_start_index": ("INT", {"default": 1,"min": -4096, "max": 4096, "step": 1}), |
|
"transitioning_frames": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}), |
|
"start_level": ("FLOAT", {"default": 0.0,"min": 0.0, "max": 1.0, "step": 0.01}), |
|
"end_level": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 1.0, "step": 0.01}), |
|
}, |
|
} |
|
|
|
def crossfadeimages(self, images_1, images_2, transition_start_index, transitioning_frames, interpolation, start_level, end_level): |
|
|
|
crossfade_images = [] |
|
|
|
if transition_start_index < 0: |
|
transition_start_index = len(images_1) + transition_start_index |
|
if transition_start_index < 0: |
|
raise ValueError("Transition start index is out of range for images_1.") |
|
|
|
transitioning_frames = min(transitioning_frames, len(images_1) - transition_start_index, len(images_2)) |
|
|
|
alphas = torch.linspace(start_level, end_level, transitioning_frames) |
|
for i in range(transitioning_frames): |
|
alpha = alphas[i] |
|
image1 = images_1[transition_start_index + i] |
|
image2 = images_2[i] |
|
easing_function = easing_functions.get(interpolation) |
|
alpha = easing_function(alpha) |
|
|
|
crossfade_image = crossfade(image1, image2, alpha) |
|
crossfade_images.append(crossfade_image) |
|
|
|
|
|
crossfade_images = torch.stack(crossfade_images, dim=0) |
|
|
|
|
|
beginning_images_1 = images_1[:transition_start_index] |
|
crossfade_images = torch.cat([beginning_images_1, crossfade_images], dim=0) |
|
|
|
|
|
remaining_images_2 = images_2[transitioning_frames:] |
|
if len(remaining_images_2) > 0: |
|
crossfade_images = torch.cat([crossfade_images, remaining_images_2], dim=0) |
|
|
|
return (crossfade_images, ) |
|
|
|
class CrossFadeImagesMulti: |
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "crossfadeimages" |
|
CATEGORY = "KJNodes/image" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}), |
|
"image_1": ("IMAGE",), |
|
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],), |
|
"transitioning_frames": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}), |
|
}, |
|
"optional": { |
|
"image_2": ("IMAGE",), |
|
} |
|
} |
|
|
|
def crossfadeimages(self, inputcount, transitioning_frames, interpolation, **kwargs): |
|
|
|
image_1 = kwargs["image_1"] |
|
first_image_shape = image_1.shape |
|
first_image_device = image_1.device |
|
height = image_1.shape[1] |
|
width = image_1.shape[2] |
|
|
|
easing_function = easing_functions[interpolation] |
|
|
|
for c in range(1, inputcount): |
|
frames = [] |
|
new_image = kwargs.get(f"image_{c + 1}", torch.zeros(first_image_shape)).to(first_image_device) |
|
new_image_height = new_image.shape[1] |
|
new_image_width = new_image.shape[2] |
|
|
|
if new_image_height != height or new_image_width != width: |
|
new_image = common_upscale(new_image.movedim(-1, 1), width, height, "lanczos", "disabled") |
|
new_image = new_image.movedim(1, -1) |
|
|
|
last_frame_image_1 = image_1[-1] |
|
first_frame_image_2 = new_image[0] |
|
|
|
for frame in range(transitioning_frames): |
|
t = frame / (transitioning_frames - 1) |
|
alpha = easing_function(t) |
|
alpha_tensor = torch.tensor(alpha, dtype=last_frame_image_1.dtype, device=last_frame_image_1.device) |
|
frame_image = crossfade(last_frame_image_1, first_frame_image_2, alpha_tensor) |
|
frames.append(frame_image) |
|
|
|
frames = torch.stack(frames) |
|
image_1 = torch.cat((image_1, frames, new_image), dim=0) |
|
|
|
return image_1, |
|
|
|
def transition_images(images_1, images_2, alpha, transition_type, blur_radius, reverse): |
|
width = images_1.shape[1] |
|
height = images_1.shape[0] |
|
|
|
mask = torch.zeros_like(images_1, device=images_1.device) |
|
|
|
alpha = alpha.item() |
|
if reverse: |
|
alpha = 1 - alpha |
|
|
|
|
|
if "horizontal slide" in transition_type: |
|
pos = round(width * alpha) |
|
mask[:, :pos, :] = 1.0 |
|
elif "vertical slide" in transition_type: |
|
pos = round(height * alpha) |
|
mask[:pos, :, :] = 1.0 |
|
elif "box" in transition_type: |
|
box_w = round(width * alpha) |
|
box_h = round(height * alpha) |
|
x1 = (width - box_w) // 2 |
|
y1 = (height - box_h) // 2 |
|
x2 = x1 + box_w |
|
y2 = y1 + box_h |
|
mask[y1:y2, x1:x2, :] = 1.0 |
|
elif "circle" in transition_type: |
|
radius = math.ceil(math.sqrt(pow(width, 2) + pow(height, 2)) * alpha / 2) |
|
c_x = width // 2 |
|
c_y = height // 2 |
|
x = torch.arange(0, width, dtype=torch.float32, device="cpu") |
|
y = torch.arange(0, height, dtype=torch.float32, device="cpu") |
|
y, x = torch.meshgrid((y, x), indexing="ij") |
|
circle = ((x - c_x) ** 2 + (y - c_y) ** 2) <= (radius ** 2) |
|
mask[circle] = 1.0 |
|
elif "horizontal door" in transition_type: |
|
bar = math.ceil(height * alpha / 2) |
|
if bar > 0: |
|
mask[:bar, :, :] = 1.0 |
|
mask[-bar:,:, :] = 1.0 |
|
elif "vertical door" in transition_type: |
|
bar = math.ceil(width * alpha / 2) |
|
if bar > 0: |
|
mask[:, :bar,:] = 1.0 |
|
mask[:, -bar:,:] = 1.0 |
|
elif "fade" in transition_type: |
|
mask[:, :, :] = alpha |
|
|
|
mask = gaussian_blur(mask, blur_radius) |
|
|
|
return images_1 * (1 - mask) + images_2 * mask |
|
|
|
def gaussian_blur(mask, blur_radius): |
|
if blur_radius > 0: |
|
kernel_size = int(blur_radius * 2) + 1 |
|
if kernel_size % 2 == 0: |
|
kernel_size += 1 |
|
sigma = blur_radius / 3 |
|
x = torch.arange(-kernel_size // 2 + 1, kernel_size // 2 + 1, dtype=torch.float32) |
|
x = torch.exp(-0.5 * (x / sigma) ** 2) |
|
kernel1d = x / x.sum() |
|
kernel2d = kernel1d[:, None] * kernel1d[None, :] |
|
kernel2d = kernel2d.to(mask.device) |
|
kernel2d = kernel2d.expand(mask.shape[2], 1, kernel2d.shape[0], kernel2d.shape[1]) |
|
mask = mask.permute(2, 0, 1).unsqueeze(0) |
|
mask = F.conv2d(mask, kernel2d, padding=kernel_size // 2, groups=mask.shape[1]) |
|
mask = mask.squeeze(0).permute(1, 2, 0) |
|
return mask |
|
|
|
easing_functions = { |
|
"linear": lambda t: t, |
|
"ease_in": ease_in, |
|
"ease_out": ease_out, |
|
"ease_in_out": ease_in_out, |
|
"bounce": bounce, |
|
"elastic": elastic, |
|
"glitchy": glitchy, |
|
"exponential_ease_out": exponential_ease_out, |
|
} |
|
|
|
class TransitionImagesMulti: |
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "transition" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Creates transitions between images. |
|
""" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}), |
|
"image_1": ("IMAGE",), |
|
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],), |
|
"transition_type": (["horizontal slide", "vertical slide", "box", "circle", "horizontal door", "vertical door", "fade"],), |
|
"transitioning_frames": ("INT", {"default": 2,"min": 2, "max": 4096, "step": 1}), |
|
"blur_radius": ("FLOAT", {"default": 0.0,"min": 0.0, "max": 100.0, "step": 0.1}), |
|
"reverse": ("BOOLEAN", {"default": False}), |
|
"device": (["CPU", "GPU"], {"default": "CPU"}), |
|
}, |
|
"optional": { |
|
"image_2": ("IMAGE",), |
|
} |
|
} |
|
|
|
def transition(self, inputcount, transitioning_frames, transition_type, interpolation, device, blur_radius, reverse, **kwargs): |
|
|
|
gpu = model_management.get_torch_device() |
|
|
|
image_1 = kwargs["image_1"] |
|
height = image_1.shape[1] |
|
width = image_1.shape[2] |
|
first_image_shape = image_1.shape |
|
first_image_device = image_1.device |
|
|
|
easing_function = easing_functions[interpolation] |
|
|
|
for c in range(1, inputcount): |
|
frames = [] |
|
new_image = kwargs.get(f"image_{c + 1}", torch.zeros(first_image_shape)).to(first_image_device) |
|
new_image_height = new_image.shape[1] |
|
new_image_width = new_image.shape[2] |
|
|
|
if new_image_height != height or new_image_width != width: |
|
new_image = common_upscale(new_image.movedim(-1, 1), width, height, "lanczos", "disabled") |
|
new_image = new_image.movedim(1, -1) |
|
|
|
last_frame_image_1 = image_1[-1] |
|
first_frame_image_2 = new_image[0] |
|
if device == "GPU": |
|
last_frame_image_1 = last_frame_image_1.to(gpu) |
|
first_frame_image_2 = first_frame_image_2.to(gpu) |
|
|
|
if reverse: |
|
last_frame_image_1, first_frame_image_2 = first_frame_image_2, last_frame_image_1 |
|
|
|
for frame in range(transitioning_frames): |
|
t = frame / (transitioning_frames - 1) |
|
alpha = easing_function(t) |
|
alpha_tensor = torch.tensor(alpha, dtype=last_frame_image_1.dtype, device=last_frame_image_1.device) |
|
frame_image = transition_images(last_frame_image_1, first_frame_image_2, alpha_tensor, transition_type, blur_radius, reverse) |
|
frames.append(frame_image) |
|
|
|
frames = torch.stack(frames).cpu() |
|
image_1 = torch.cat((image_1, frames, new_image), dim=0) |
|
|
|
return image_1.cpu(), |
|
|
|
class TransitionImagesInBatch: |
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "transition" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Creates transitions between images in a batch. |
|
""" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"images": ("IMAGE",), |
|
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],), |
|
"transition_type": (["horizontal slide", "vertical slide", "box", "circle", "horizontal door", "vertical door", "fade"],), |
|
"transitioning_frames": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}), |
|
"blur_radius": ("FLOAT", {"default": 0.0,"min": 0.0, "max": 100.0, "step": 0.1}), |
|
"reverse": ("BOOLEAN", {"default": False}), |
|
"device": (["CPU", "GPU"], {"default": "CPU"}), |
|
}, |
|
} |
|
|
|
|
|
def transition(self, images, transitioning_frames, transition_type, interpolation, device, blur_radius, reverse): |
|
if images.shape[0] == 1: |
|
return images, |
|
|
|
gpu = model_management.get_torch_device() |
|
|
|
easing_function = easing_functions[interpolation] |
|
|
|
images_list = [] |
|
pbar = ProgressBar(images.shape[0] - 1) |
|
for i in range(images.shape[0] - 1): |
|
frames = [] |
|
image_1 = images[i] |
|
image_2 = images[i + 1] |
|
|
|
if device == "GPU": |
|
image_1 = image_1.to(gpu) |
|
image_2 = image_2.to(gpu) |
|
|
|
if reverse: |
|
image_1, image_2 = image_2, image_1 |
|
|
|
for frame in range(transitioning_frames): |
|
t = frame / (transitioning_frames - 1) |
|
alpha = easing_function(t) |
|
alpha_tensor = torch.tensor(alpha, dtype=image_1.dtype, device=image_1.device) |
|
frame_image = transition_images(image_1, image_2, alpha_tensor, transition_type, blur_radius, reverse) |
|
frames.append(frame_image) |
|
pbar.update(1) |
|
|
|
frames = torch.stack(frames).cpu() |
|
images_list.append(frames) |
|
images = torch.cat(images_list, dim=0) |
|
|
|
return images.cpu(), |
|
|
|
class ImageBatchJoinWithTransition: |
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "transition_batches" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Transitions between two batches of images, starting at a specified index in the first batch. |
|
During the transition, frames from both batches are blended frame-by-frame, so the video keeps playing. |
|
""" |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"images_1": ("IMAGE",), |
|
"images_2": ("IMAGE",), |
|
"start_index": ("INT", {"default": 0, "min": -10000, "max": 10000, "step": 1}), |
|
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],), |
|
"transition_type": (["horizontal slide", "vertical slide", "box", "circle", "horizontal door", "vertical door", "fade"],), |
|
"transitioning_frames": ("INT", {"default": 1, "min": 1, "max": 4096, "step": 1}), |
|
"blur_radius": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step": 0.1}), |
|
"reverse": ("BOOLEAN", {"default": False}), |
|
"device": (["CPU", "GPU"], {"default": "CPU"}), |
|
}, |
|
} |
|
|
|
def transition_batches(self, images_1, images_2, start_index, interpolation, transition_type, transitioning_frames, blur_radius, reverse, device): |
|
if images_1.shape[0] == 0 or images_2.shape[0] == 0: |
|
raise ValueError("Both input batches must have at least one image.") |
|
|
|
if start_index < 0: |
|
start_index = images_1.shape[0] + start_index |
|
if start_index < 0 or start_index > images_1.shape[0]: |
|
raise ValueError("start_index is out of range.") |
|
|
|
gpu = model_management.get_torch_device() |
|
easing_function = easing_functions[interpolation] |
|
out_frames = [] |
|
|
|
|
|
if start_index > 0: |
|
out_frames.append(images_1[:start_index]) |
|
|
|
|
|
max_transition = min(transitioning_frames, images_1.shape[0] - start_index, images_2.shape[0]) |
|
|
|
|
|
for i in range(max_transition): |
|
img1 = images_1[start_index + i] |
|
img2 = images_2[i] |
|
if device == "GPU": |
|
img1 = img1.to(gpu) |
|
img2 = img2.to(gpu) |
|
if reverse: |
|
img1, img2 = img2, img1 |
|
t = i / (max_transition - 1) if max_transition > 1 else 1.0 |
|
alpha = easing_function(t) |
|
alpha_tensor = torch.tensor(alpha, dtype=img1.dtype, device=img1.device) |
|
frame_image = transition_images(img1, img2, alpha_tensor, transition_type, blur_radius, reverse) |
|
out_frames.append(frame_image.cpu().unsqueeze(0)) |
|
|
|
|
|
if images_2.shape[0] > max_transition: |
|
out_frames.append(images_2[max_transition:]) |
|
|
|
|
|
out = torch.cat(out_frames, dim=0) |
|
return (out.cpu(),) |
|
|
|
class ShuffleImageBatch: |
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "shuffle" |
|
CATEGORY = "KJNodes/image" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"images": ("IMAGE",), |
|
"seed": ("INT", {"default": 123,"min": 0, "max": 0xffffffffffffffff, "step": 1}), |
|
}, |
|
} |
|
|
|
def shuffle(self, images, seed): |
|
torch.manual_seed(seed) |
|
B, H, W, C = images.shape |
|
indices = torch.randperm(B) |
|
shuffled_images = images[indices] |
|
|
|
return shuffled_images, |
|
|
|
class GetImageRangeFromBatch: |
|
|
|
RETURN_TYPES = ("IMAGE", "MASK", ) |
|
FUNCTION = "imagesfrombatch" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Returns a range of images from a batch. |
|
""" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"start_index": ("INT", {"default": 0,"min": -1, "max": 4096, "step": 1}), |
|
"num_frames": ("INT", {"default": 1,"min": 1, "max": 4096, "step": 1}), |
|
}, |
|
"optional": { |
|
"images": ("IMAGE",), |
|
"masks": ("MASK",), |
|
} |
|
} |
|
|
|
def imagesfrombatch(self, start_index, num_frames, images=None, masks=None): |
|
chosen_images = None |
|
chosen_masks = None |
|
|
|
|
|
if images is not None: |
|
if start_index == -1: |
|
start_index = max(0, len(images) - num_frames) |
|
if start_index < 0 or start_index >= len(images): |
|
raise ValueError("Start index is out of range") |
|
end_index = min(start_index + num_frames, len(images)) |
|
chosen_images = images[start_index:end_index] |
|
|
|
|
|
if masks is not None: |
|
if start_index == -1: |
|
start_index = max(0, len(masks) - num_frames) |
|
if start_index < 0 or start_index >= len(masks): |
|
raise ValueError("Start index is out of range for masks") |
|
end_index = min(start_index + num_frames, len(masks)) |
|
chosen_masks = masks[start_index:end_index] |
|
|
|
return (chosen_images, chosen_masks,) |
|
|
|
class GetLatentRangeFromBatch: |
|
|
|
RETURN_TYPES = ("LATENT", ) |
|
FUNCTION = "latentsfrombatch" |
|
CATEGORY = "KJNodes/latents" |
|
DESCRIPTION = """ |
|
Returns a range of latents from a batch. |
|
""" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"latents": ("LATENT",), |
|
"start_index": ("INT", {"default": 0,"min": -1, "max": 4096, "step": 1}), |
|
"num_frames": ("INT", {"default": 1,"min": -1, "max": 4096, "step": 1}), |
|
}, |
|
} |
|
|
|
def latentsfrombatch(self, latents, start_index, num_frames): |
|
chosen_latents = None |
|
samples = latents["samples"] |
|
if len(samples.shape) == 4: |
|
B, C, H, W = samples.shape |
|
num_latents = B |
|
elif len(samples.shape) == 5: |
|
B, C, T, H, W = samples.shape |
|
num_latents = T |
|
|
|
if start_index == -1: |
|
start_index = max(0, num_latents - num_frames) |
|
if start_index < 0 or start_index >= num_latents: |
|
raise ValueError("Start index is out of range") |
|
|
|
end_index = num_latents if num_frames == -1 else min(start_index + num_frames, num_latents) |
|
|
|
if len(samples.shape) == 4: |
|
chosen_latents = samples[start_index:end_index] |
|
elif len(samples.shape) == 5: |
|
chosen_latents = samples[:, :, start_index:end_index] |
|
|
|
return ({"samples": chosen_latents.contiguous(),},) |
|
|
|
class InsertLatentToIndex: |
|
|
|
RETURN_TYPES = ("LATENT", ) |
|
FUNCTION = "insert" |
|
CATEGORY = "KJNodes/latents" |
|
DESCRIPTION = """ |
|
Inserts a latent at the specified index into the original latent batch. |
|
""" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"source": ("LATENT",), |
|
"destination": ("LATENT",), |
|
"index": ("INT", {"default": 0,"min": -1, "max": 4096, "step": 1}), |
|
}, |
|
} |
|
|
|
def insert(self, source, destination, index): |
|
samples_destination = destination["samples"] |
|
samples_source = source["samples"].to(samples_destination) |
|
|
|
if len(samples_source.shape) == 4: |
|
B, C, H, W = samples_source.shape |
|
num_latents = B |
|
elif len(samples_source.shape) == 5: |
|
B, C, T, H, W = samples_source.shape |
|
num_latents = T |
|
|
|
if index >= num_latents or index < 0: |
|
raise ValueError(f"Index {index} out of bounds for tensor with {num_latents} latents") |
|
|
|
if len(samples_source.shape) == 4: |
|
joined_latents = torch.cat([ |
|
samples_destination[:index], |
|
samples_source, |
|
samples_destination[index+1:] |
|
], dim=0) |
|
else: |
|
joined_latents = torch.cat([ |
|
samples_destination[:, :, :index], |
|
samples_source, |
|
samples_destination[:, :, index+1:] |
|
], dim=2) |
|
|
|
return ({"samples": joined_latents,},) |
|
|
|
class ImageBatchFilter: |
|
|
|
RETURN_TYPES = ("IMAGE", "STRING",) |
|
RETURN_NAMES = ("images", "removed_indices",) |
|
FUNCTION = "filter" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = "Removes empty images from a batch" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"images": ("IMAGE",), |
|
"empty_color": ("STRING", {"default": "0, 0, 0"}), |
|
"empty_threshold": ("FLOAT", {"default": 0.01,"min": 0.0, "max": 1.0, "step": 0.01}), |
|
}, |
|
"optional": { |
|
"replacement_image": ("IMAGE",), |
|
} |
|
} |
|
|
|
def filter(self, images, empty_color, empty_threshold, replacement_image=None): |
|
B, H, W, C = images.shape |
|
|
|
input_images = images.clone() |
|
|
|
empty_color_list = [int(color.strip()) for color in empty_color.split(',')] |
|
empty_color_tensor = torch.tensor(empty_color_list, dtype=torch.float32).to(input_images.device) |
|
|
|
color_diff = torch.abs(input_images - empty_color_tensor) |
|
mean_diff = color_diff.mean(dim=(1, 2, 3)) |
|
|
|
empty_indices = mean_diff <= empty_threshold |
|
empty_indices_string = ', '.join([str(i) for i in range(B) if empty_indices[i]]) |
|
|
|
if replacement_image is not None: |
|
B_rep, H_rep, W_rep, C_rep = replacement_image.shape |
|
replacement = replacement_image.clone() |
|
if (H_rep != images.shape[1]) or (W_rep != images.shape[2]) or (C_rep != images.shape[3]): |
|
replacement = common_upscale(replacement.movedim(-1, 1), W, H, "lanczos", "center").movedim(1, -1) |
|
input_images[empty_indices] = replacement[0] |
|
|
|
return (input_images, empty_indices_string,) |
|
else: |
|
non_empty_images = input_images[~empty_indices] |
|
return (non_empty_images, empty_indices_string,) |
|
|
|
class GetImagesFromBatchIndexed: |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "indexedimagesfrombatch" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Selects and returns the images at the specified indices as an image batch. |
|
""" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"images": ("IMAGE",), |
|
"indexes": ("STRING", {"default": "0, 1, 2", "multiline": True}), |
|
}, |
|
} |
|
|
|
def indexedimagesfrombatch(self, images, indexes): |
|
|
|
|
|
index_list = [int(index.strip()) for index in indexes.split(',')] |
|
|
|
|
|
indices_tensor = torch.tensor(index_list, dtype=torch.long) |
|
|
|
|
|
chosen_images = images[indices_tensor] |
|
|
|
return (chosen_images,) |
|
|
|
class InsertImagesToBatchIndexed: |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "insertimagesfrombatch" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Inserts images at the specified indices into the original image batch. |
|
""" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"original_images": ("IMAGE",), |
|
"images_to_insert": ("IMAGE",), |
|
"indexes": ("STRING", {"default": "0, 1, 2", "multiline": True}), |
|
}, |
|
"optional": { |
|
"mode": (["replace", "insert"],), |
|
} |
|
} |
|
|
|
def insertimagesfrombatch(self, original_images, images_to_insert, indexes, mode="replace"): |
|
if indexes == "": |
|
return (original_images,) |
|
|
|
input_images = original_images.clone() |
|
|
|
|
|
index_list = [int(index.strip()) for index in indexes.split(',')] |
|
|
|
|
|
indices_tensor = torch.tensor(index_list, dtype=torch.long) |
|
|
|
|
|
if not isinstance(images_to_insert, torch.Tensor): |
|
images_to_insert = torch.tensor(images_to_insert) |
|
|
|
if mode == "replace": |
|
|
|
for index, image in zip(indices_tensor, images_to_insert): |
|
input_images[index] = image |
|
else: |
|
|
|
new_images = [] |
|
insert_offset = 0 |
|
|
|
for i in range(len(input_images) + len(indices_tensor)): |
|
if insert_offset < len(indices_tensor) and i == indices_tensor[insert_offset]: |
|
|
|
new_images.append(images_to_insert[insert_offset % len(images_to_insert)]) |
|
insert_offset += 1 |
|
else: |
|
new_images.append(input_images[i - insert_offset]) |
|
|
|
|
|
input_images = torch.stack(new_images, dim=0) |
|
|
|
return (input_images,) |
|
|
|
class PadImageBatchInterleaved: |
|
|
|
RETURN_TYPES = ("IMAGE", "MASK",) |
|
RETURN_NAMES = ("images", "masks",) |
|
FUNCTION = "pad" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Inserts empty frames between the images in a batch. |
|
""" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"images": ("IMAGE",), |
|
"empty_frames_per_image": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}), |
|
"pad_frame_value": ("FLOAT", {"default": 0.0,"min": 0.0, "max": 1.0, "step": 0.01}), |
|
"add_after_last": ("BOOLEAN", {"default": False}), |
|
}, |
|
} |
|
|
|
def pad(self, images, empty_frames_per_image, pad_frame_value, add_after_last): |
|
B, H, W, C = images.shape |
|
|
|
|
|
if B == 1: |
|
total_frames = 1 + empty_frames_per_image if add_after_last else 1 |
|
else: |
|
|
|
total_frames = B + (B-1) * empty_frames_per_image |
|
|
|
if add_after_last: |
|
total_frames += empty_frames_per_image |
|
|
|
|
|
padded_batch = torch.ones((total_frames, H, W, C), |
|
dtype=images.dtype, |
|
device=images.device) * pad_frame_value |
|
|
|
mask = torch.zeros((total_frames, H, W), |
|
dtype=images.dtype, |
|
device=images.device) |
|
|
|
|
|
for i in range(B): |
|
if B == 1: |
|
|
|
new_pos = 0 |
|
else: |
|
|
|
new_pos = i * (empty_frames_per_image + 1) |
|
|
|
padded_batch[new_pos] = images[i] |
|
mask[new_pos] = 1.0 |
|
|
|
return (padded_batch, mask) |
|
|
|
class ReplaceImagesInBatch: |
|
|
|
RETURN_TYPES = ("IMAGE", "MASK",) |
|
FUNCTION = "replace" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Replaces the images in a batch, starting from the specified start index, |
|
with the replacement images. |
|
""" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"start_index": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}), |
|
}, |
|
"optional": { |
|
"original_images": ("IMAGE",), |
|
"replacement_images": ("IMAGE",), |
|
"original_masks": ("MASK",), |
|
"replacement_masks": ("MASK",), |
|
} |
|
} |
|
|
|
def replace(self, original_images=None, replacement_images=None, start_index=1, original_masks=None, replacement_masks=None): |
|
images = None |
|
masks = None |
|
|
|
if original_images is not None and replacement_images is not None: |
|
if start_index >= len(original_images): |
|
raise ValueError("ReplaceImagesInBatch: Start index is out of range") |
|
end_index = start_index + len(replacement_images) |
|
if end_index > len(original_images): |
|
raise ValueError("ReplaceImagesInBatch: End index is out of range") |
|
|
|
original_images_copy = original_images.clone() |
|
if original_images_copy.shape[2] != replacement_images.shape[2] or original_images_copy.shape[3] != replacement_images.shape[3]: |
|
replacement_images = common_upscale(replacement_images.movedim(-1, 1), original_images_copy.shape[1], original_images_copy.shape[2], "lanczos", "center").movedim(1, -1) |
|
|
|
original_images_copy[start_index:end_index] = replacement_images |
|
images = original_images_copy |
|
else: |
|
images = torch.zeros((1, 64, 64, 3)) |
|
|
|
if original_masks is not None and replacement_masks is not None: |
|
if start_index >= len(original_masks): |
|
raise ValueError("ReplaceImagesInBatch: Start index is out of range") |
|
end_index = start_index + len(replacement_masks) |
|
if end_index > len(original_masks): |
|
raise ValueError("ReplaceImagesInBatch: End index is out of range") |
|
|
|
original_masks_copy = original_masks.clone() |
|
if original_masks_copy.shape[1] != replacement_masks.shape[1] or original_masks_copy.shape[2] != replacement_masks.shape[2]: |
|
replacement_masks = common_upscale(replacement_masks.unsqueeze(1), original_masks_copy.shape[1], original_masks_copy.shape[2], "nearest-exact", "center").squeeze(0) |
|
|
|
original_masks_copy[start_index:end_index] = replacement_masks |
|
masks = original_masks_copy |
|
else: |
|
masks = torch.zeros((1, 64, 64)) |
|
|
|
return (images, masks) |
|
|
|
|
|
class ReverseImageBatch: |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "reverseimagebatch" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Reverses the order of the images in a batch. |
|
""" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"images": ("IMAGE",), |
|
}, |
|
} |
|
|
|
def reverseimagebatch(self, images): |
|
reversed_images = torch.flip(images, [0]) |
|
return (reversed_images, ) |
|
|
|
class ImageBatchMulti: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}), |
|
"image_1": ("IMAGE", ), |
|
|
|
}, |
|
"optional": { |
|
"image_2": ("IMAGE", ), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
RETURN_NAMES = ("images",) |
|
FUNCTION = "combine" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Creates an image batch from multiple images. |
|
You can set how many inputs the node has, |
|
with the **inputcount** and clicking update. |
|
""" |
|
|
|
def combine(self, inputcount, **kwargs): |
|
from nodes import ImageBatch |
|
image_batch_node = ImageBatch() |
|
image = kwargs["image_1"].cpu() |
|
first_image_shape = image.shape |
|
for c in range(1, inputcount): |
|
new_image = kwargs.get(f"image_{c + 1}", torch.zeros(first_image_shape)).cpu() |
|
image, = image_batch_node.batch(image, new_image) |
|
return (image,) |
|
|
|
|
|
class ImageTensorList: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"image1": ("IMAGE",), |
|
"image2": ("IMAGE",), |
|
}} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "append" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Creates an image list from the input images. |
|
""" |
|
|
|
def append(self, image1, image2): |
|
image_list = [] |
|
if isinstance(image1, torch.Tensor) and isinstance(image2, torch.Tensor): |
|
image_list = [image1, image2] |
|
elif isinstance(image1, list) and isinstance(image2, torch.Tensor): |
|
image_list = image1 + [image2] |
|
elif isinstance(image1, torch.Tensor) and isinstance(image2, list): |
|
image_list = [image1] + image2 |
|
elif isinstance(image1, list) and isinstance(image2, list): |
|
image_list = image1 + image2 |
|
return image_list, |
|
|
|
class ImageAddMulti: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}), |
|
"image_1": ("IMAGE", ), |
|
"image_2": ("IMAGE", ), |
|
"blending": ( |
|
[ 'add', |
|
'subtract', |
|
'multiply', |
|
'difference', |
|
], |
|
{ |
|
"default": 'add' |
|
}), |
|
"blend_amount": ("FLOAT", {"default": 0.5, "min": 0, "max": 1, "step": 0.01}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
RETURN_NAMES = ("images",) |
|
FUNCTION = "add" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Add blends multiple images together. |
|
You can set how many inputs the node has, |
|
with the **inputcount** and clicking update. |
|
""" |
|
|
|
def add(self, inputcount, blending, blend_amount, **kwargs): |
|
image = kwargs["image_1"] |
|
for c in range(1, inputcount): |
|
new_image = kwargs[f"image_{c + 1}"] |
|
if blending == "add": |
|
image = torch.add(image * blend_amount, new_image * blend_amount) |
|
elif blending == "subtract": |
|
image = torch.sub(image * blend_amount, new_image * blend_amount) |
|
elif blending == "multiply": |
|
image = torch.mul(image * blend_amount, new_image * blend_amount) |
|
elif blending == "difference": |
|
image = torch.sub(image, new_image) |
|
return (image,) |
|
|
|
class ImageConcatMulti: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}), |
|
"image_1": ("IMAGE", ), |
|
|
|
"direction": ( |
|
[ 'right', |
|
'down', |
|
'left', |
|
'up', |
|
], |
|
{ |
|
"default": 'right' |
|
}), |
|
"match_image_size": ("BOOLEAN", {"default": False}), |
|
}, |
|
"optional": { |
|
"image_2": ("IMAGE", ), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
RETURN_NAMES = ("images",) |
|
FUNCTION = "combine" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Creates an image from multiple images. |
|
You can set how many inputs the node has, |
|
with the **inputcount** and clicking update. |
|
""" |
|
|
|
def combine(self, inputcount, direction, match_image_size, **kwargs): |
|
image = kwargs["image_1"] |
|
first_image_shape = None |
|
if first_image_shape is None: |
|
first_image_shape = image.shape |
|
for c in range(1, inputcount): |
|
new_image = kwargs.get(f"image_{c + 1}", torch.zeros(first_image_shape)) |
|
image, = ImageConcanate.concatenate(self, image, new_image, direction, match_image_size, first_image_shape=first_image_shape) |
|
first_image_shape = None |
|
return (image,) |
|
|
|
class PreviewAnimation: |
|
def __init__(self): |
|
self.output_dir = folder_paths.get_temp_directory() |
|
self.type = "temp" |
|
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5)) |
|
self.compress_level = 1 |
|
|
|
methods = {"default": 4, "fastest": 0, "slowest": 6} |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": |
|
{ |
|
"fps": ("FLOAT", {"default": 8.0, "min": 0.01, "max": 1000.0, "step": 0.01}), |
|
}, |
|
"optional": { |
|
"images": ("IMAGE", ), |
|
"masks": ("MASK", ), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = () |
|
FUNCTION = "preview" |
|
OUTPUT_NODE = True |
|
CATEGORY = "KJNodes/image" |
|
|
|
def preview(self, fps, images=None, masks=None): |
|
filename_prefix = "AnimPreview" |
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) |
|
results = list() |
|
|
|
pil_images = [] |
|
|
|
if images is not None and masks is not None: |
|
for image in images: |
|
i = 255. * image.cpu().numpy() |
|
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) |
|
pil_images.append(img) |
|
for mask in masks: |
|
if pil_images: |
|
mask_np = mask.cpu().numpy() |
|
mask_np = np.clip(mask_np * 255, 0, 255).astype(np.uint8) |
|
mask_img = Image.fromarray(mask_np, mode='L') |
|
img = pil_images.pop(0) |
|
img = img.convert("RGBA") |
|
|
|
|
|
rgba_mask_img = Image.new("RGBA", img.size, (255, 255, 255, 255)) |
|
rgba_mask_img.putalpha(mask_img) |
|
|
|
|
|
composited_img = Image.alpha_composite(img, rgba_mask_img) |
|
pil_images.append(composited_img) |
|
|
|
elif images is not None and masks is None: |
|
for image in images: |
|
i = 255. * image.cpu().numpy() |
|
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) |
|
pil_images.append(img) |
|
|
|
elif masks is not None and images is None: |
|
for mask in masks: |
|
mask_np = 255. * mask.cpu().numpy() |
|
mask_img = Image.fromarray(np.clip(mask_np, 0, 255).astype(np.uint8)) |
|
pil_images.append(mask_img) |
|
else: |
|
print("PreviewAnimation: No images or masks provided") |
|
return { "ui": { "images": results, "animated": (None,), "text": "empty" }} |
|
|
|
num_frames = len(pil_images) |
|
|
|
c = len(pil_images) |
|
for i in range(0, c, num_frames): |
|
file = f"{filename}_{counter:05}_.webp" |
|
pil_images[i].save(os.path.join(full_output_folder, file), save_all=True, duration=int(1000.0/fps), append_images=pil_images[i + 1:i + num_frames], lossless=False, quality=50, method=0) |
|
results.append({ |
|
"filename": file, |
|
"subfolder": subfolder, |
|
"type": self.type |
|
}) |
|
counter += 1 |
|
|
|
animated = num_frames != 1 |
|
return { "ui": { "images": results, "animated": (animated,), "text": [f"{num_frames}x{pil_images[0].size[0]}x{pil_images[0].size[1]}"] } } |
|
|
|
class ImageResizeKJ: |
|
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1, }), |
|
"height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1, }), |
|
"upscale_method": (s.upscale_methods,), |
|
"keep_proportion": ("BOOLEAN", { "default": False }), |
|
"divisible_by": ("INT", { "default": 2, "min": 0, "max": 512, "step": 1, }), |
|
}, |
|
"optional" : { |
|
|
|
|
|
"get_image_size": ("IMAGE",), |
|
"crop": (["disabled","center", 0], { "tooltip": "0 will do the default center crop, this is a workaround for the widget order changing with the new frontend, as in old workflows the value of this widget becomes 0 automatically" }), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "INT", "INT",) |
|
RETURN_NAMES = ("IMAGE", "width", "height",) |
|
FUNCTION = "resize" |
|
CATEGORY = "KJNodes/image" |
|
DEPRECATED = True |
|
DESCRIPTION = """ |
|
DEPRECATED! |
|
|
|
Due to ComfyUI frontend changes, this node should no longer be used, please check the |
|
v2 of the node. This node is only kept to not completely break older workflows. |
|
|
|
""" |
|
|
|
def resize(self, image, width, height, keep_proportion, upscale_method, divisible_by, |
|
width_input=None, height_input=None, get_image_size=None, crop="disabled"): |
|
B, H, W, C = image.shape |
|
|
|
if width_input: |
|
width = width_input |
|
if height_input: |
|
height = height_input |
|
if get_image_size is not None: |
|
_, height, width, _ = get_image_size.shape |
|
|
|
if keep_proportion and get_image_size is None: |
|
|
|
if width == 0 and height != 0: |
|
ratio = height / H |
|
width = round(W * ratio) |
|
elif height == 0 and width != 0: |
|
ratio = width / W |
|
height = round(H * ratio) |
|
elif width != 0 and height != 0: |
|
|
|
ratio = min(width / W, height / H) |
|
width = round(W * ratio) |
|
height = round(H * ratio) |
|
else: |
|
if width == 0: |
|
width = W |
|
if height == 0: |
|
height = H |
|
|
|
if divisible_by > 1 and get_image_size is None: |
|
width = width - (width % divisible_by) |
|
height = height - (height % divisible_by) |
|
|
|
if crop == 0: |
|
crop = "center" |
|
|
|
image = image.movedim(-1,1) |
|
image = common_upscale(image, width, height, upscale_method, crop) |
|
image = image.movedim(1,-1) |
|
|
|
return(image, image.shape[2], image.shape[1],) |
|
|
|
class ImageResizeKJv2: |
|
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1, }), |
|
"height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1, }), |
|
"upscale_method": (s.upscale_methods,), |
|
"keep_proportion": (["stretch", "resize", "pad", "pad_edge", "crop"], { "default": False }), |
|
"pad_color": ("STRING", { "default": "0, 0, 0", "tooltip": "Color to use for padding."}), |
|
"crop_position": (["center", "top", "bottom", "left", "right"], { "default": "center" }), |
|
"divisible_by": ("INT", { "default": 2, "min": 0, "max": 512, "step": 1, }), |
|
}, |
|
"optional" : { |
|
"mask": ("MASK",), |
|
"device": (["cpu", "gpu"],), |
|
}, |
|
"hidden": { |
|
"unique_id": "UNIQUE_ID", |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "INT", "INT", "MASK",) |
|
RETURN_NAMES = ("IMAGE", "width", "height", "mask",) |
|
FUNCTION = "resize" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """ |
|
Resizes the image to the specified width and height. |
|
Size can be retrieved from the input. |
|
|
|
Keep proportions keeps the aspect ratio of the image, by |
|
highest dimension. |
|
""" |
|
|
|
def resize(self, image, width, height, keep_proportion, upscale_method, divisible_by, pad_color, crop_position, unique_id, device="cpu", mask=None): |
|
B, H, W, C = image.shape |
|
|
|
if device == "gpu": |
|
if upscale_method == "lanczos": |
|
raise Exception("Lanczos is not supported on the GPU") |
|
device = model_management.get_torch_device() |
|
else: |
|
device = torch.device("cpu") |
|
|
|
if width == 0: |
|
width = W |
|
if height == 0: |
|
height = H |
|
|
|
if keep_proportion == "resize" or keep_proportion.startswith("pad"): |
|
|
|
if width == 0 and height != 0: |
|
ratio = height / H |
|
new_width = round(W * ratio) |
|
elif height == 0 and width != 0: |
|
ratio = width / W |
|
new_height = round(H * ratio) |
|
elif width != 0 and height != 0: |
|
|
|
ratio = min(width / W, height / H) |
|
new_width = round(W * ratio) |
|
new_height = round(H * ratio) |
|
|
|
if keep_proportion.startswith("pad"): |
|
|
|
if crop_position == "center": |
|
pad_left = (width - new_width) // 2 |
|
pad_right = width - new_width - pad_left |
|
pad_top = (height - new_height) // 2 |
|
pad_bottom = height - new_height - pad_top |
|
elif crop_position == "top": |
|
pad_left = (width - new_width) // 2 |
|
pad_right = width - new_width - pad_left |
|
pad_top = 0 |
|
pad_bottom = height - new_height |
|
elif crop_position == "bottom": |
|
pad_left = (width - new_width) // 2 |
|
pad_right = width - new_width - pad_left |
|
pad_top = height - new_height |
|
pad_bottom = 0 |
|
elif crop_position == "left": |
|
pad_left = 0 |
|
pad_right = width - new_width |
|
pad_top = (height - new_height) // 2 |
|
pad_bottom = height - new_height - pad_top |
|
elif crop_position == "right": |
|
pad_left = width - new_width |
|
pad_right = 0 |
|
pad_top = (height - new_height) // 2 |
|
pad_bottom = height - new_height - pad_top |
|
|
|
width = new_width |
|
height = new_height |
|
|
|
if divisible_by > 1: |
|
width = width - (width % divisible_by) |
|
height = height - (height % divisible_by) |
|
|
|
out_image = image.clone().to(device) |
|
|
|
if mask is not None: |
|
out_mask = mask.clone().to(device) |
|
else: |
|
out_mask = None |
|
|
|
if keep_proportion == "crop": |
|
old_width = W |
|
old_height = H |
|
old_aspect = old_width / old_height |
|
new_aspect = width / height |
|
|
|
|
|
if old_aspect > new_aspect: |
|
crop_w = round(old_height * new_aspect) |
|
crop_h = old_height |
|
else: |
|
crop_w = old_width |
|
crop_h = round(old_width / new_aspect) |
|
|
|
|
|
if crop_position == "center": |
|
x = (old_width - crop_w) // 2 |
|
y = (old_height - crop_h) // 2 |
|
elif crop_position == "top": |
|
x = (old_width - crop_w) // 2 |
|
y = 0 |
|
elif crop_position == "bottom": |
|
x = (old_width - crop_w) // 2 |
|
y = old_height - crop_h |
|
elif crop_position == "left": |
|
x = 0 |
|
y = (old_height - crop_h) // 2 |
|
elif crop_position == "right": |
|
x = old_width - crop_w |
|
y = (old_height - crop_h) // 2 |
|
|
|
|
|
out_image = out_image.narrow(-2, x, crop_w).narrow(-3, y, crop_h) |
|
if mask is not None: |
|
out_mask = out_mask.narrow(-1, x, crop_w).narrow(-2, y, crop_h) |
|
|
|
out_image = common_upscale(out_image.movedim(-1,1), width, height, upscale_method, crop="disabled").movedim(1,-1) |
|
|
|
if mask is not None: |
|
if upscale_method == "lanczos": |
|
out_mask = common_upscale(out_mask.unsqueeze(1).repeat(1, 3, 1, 1), width, height, upscale_method, crop="disabled").movedim(1,-1)[:, :, :, 0] |
|
else: |
|
out_mask = common_upscale(out_mask.unsqueeze(1), width, height, upscale_method, crop="disabled").squeeze(1) |
|
|
|
if keep_proportion.startswith("pad"): |
|
if pad_left > 0 or pad_right > 0 or pad_top > 0 or pad_bottom > 0: |
|
padded_width = width + pad_left + pad_right |
|
padded_height = height + pad_top + pad_bottom |
|
if divisible_by > 1: |
|
width_remainder = padded_width % divisible_by |
|
height_remainder = padded_height % divisible_by |
|
if width_remainder > 0: |
|
extra_width = divisible_by - width_remainder |
|
pad_right += extra_width |
|
if height_remainder > 0: |
|
extra_height = divisible_by - height_remainder |
|
pad_bottom += extra_height |
|
out_image, _ = ImagePadKJ.pad(self, out_image, pad_left, pad_right, pad_top, pad_bottom, 0, pad_color, "edge" if keep_proportion == "pad_edge" else "color") |
|
if mask is not None: |
|
out_mask = out_mask.unsqueeze(1).repeat(1, 3, 1, 1).movedim(1,-1) |
|
out_mask, _ = ImagePadKJ.pad(self, out_mask, pad_left, pad_right, pad_top, pad_bottom, 0, pad_color, "edge" if keep_proportion == "pad_edge" else "color") |
|
out_mask = out_mask[:, :, :, 0] |
|
else: |
|
B, H_pad, W_pad, _ = out_image.shape |
|
out_mask = torch.ones((B, H_pad, W_pad), dtype=out_image.dtype, device=out_image.device) |
|
out_mask[:, pad_top:pad_top+height, pad_left:pad_left+width] = 0.0 |
|
|
|
|
|
if unique_id and PromptServer is not None: |
|
try: |
|
num_elements = out_image.numel() |
|
element_size = out_image.element_size() |
|
memory_size_mb = (num_elements * element_size) / (1024 * 1024) |
|
|
|
PromptServer.instance.send_progress_text( |
|
f"<tr><td>Output: </td><td><b>{out_image.shape[0]}</b> x <b>{out_image.shape[2]}</b> x <b>{out_image.shape[1]} | {memory_size_mb:.2f}MB</b></td></tr>", |
|
unique_id |
|
) |
|
except: |
|
pass |
|
|
|
return(out_image.cpu(), out_image.shape[2], out_image.shape[1], out_mask.cpu() if out_mask is not None else torch.zeros(64,64, device=torch.device("cpu"), dtype=torch.float32)) |
|
|
|
import pathlib |
|
class LoadAndResizeImage: |
|
_color_channels = ["alpha", "red", "green", "blue"] |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
input_dir = folder_paths.get_input_directory() |
|
files = [f.name for f in pathlib.Path(input_dir).iterdir() if f.is_file()] |
|
return {"required": |
|
{ |
|
"image": (sorted(files), {"image_upload": True}), |
|
"resize": ("BOOLEAN", { "default": False }), |
|
"width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }), |
|
"height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }), |
|
"repeat": ("INT", { "default": 1, "min": 1, "max": 4096, "step": 1, }), |
|
"keep_proportion": ("BOOLEAN", { "default": False }), |
|
"divisible_by": ("INT", { "default": 2, "min": 0, "max": 512, "step": 1, }), |
|
"mask_channel": (s._color_channels, {"tooltip": "Channel to use for the mask output"}), |
|
"background_color": ("STRING", { "default": "", "tooltip": "Fills the alpha channel with the specified color."}), |
|
}, |
|
} |
|
|
|
CATEGORY = "KJNodes/image" |
|
RETURN_TYPES = ("IMAGE", "MASK", "INT", "INT", "STRING",) |
|
RETURN_NAMES = ("image", "mask", "width", "height","image_path",) |
|
FUNCTION = "load_image" |
|
|
|
def load_image(self, image, resize, width, height, repeat, keep_proportion, divisible_by, mask_channel, background_color): |
|
from PIL import ImageColor, Image, ImageOps, ImageSequence |
|
import numpy as np |
|
import torch |
|
image_path = folder_paths.get_annotated_filepath(image) |
|
|
|
import node_helpers |
|
img = node_helpers.pillow(Image.open, image_path) |
|
|
|
|
|
if background_color: |
|
try: |
|
|
|
bg_color_rgba = tuple(int(x.strip()) for x in background_color.split(',')) |
|
except ValueError: |
|
|
|
if background_color.startswith('#') or background_color.lower() in ImageColor.colormap: |
|
bg_color_rgba = ImageColor.getrgb(background_color) |
|
else: |
|
raise ValueError(f"Invalid background color: {background_color}") |
|
|
|
bg_color_rgba += (255,) |
|
else: |
|
bg_color_rgba = None |
|
|
|
output_images = [] |
|
output_masks = [] |
|
w, h = None, None |
|
|
|
excluded_formats = ['MPO'] |
|
|
|
W, H = img.size |
|
if resize: |
|
if keep_proportion: |
|
ratio = min(width / W, height / H) |
|
width = round(W * ratio) |
|
height = round(H * ratio) |
|
else: |
|
if width == 0: |
|
width = W |
|
if height == 0: |
|
height = H |
|
|
|
if divisible_by > 1: |
|
width = width - (width % divisible_by) |
|
height = height - (height % divisible_by) |
|
else: |
|
width, height = W, H |
|
|
|
for frame in ImageSequence.Iterator(img): |
|
frame = node_helpers.pillow(ImageOps.exif_transpose, frame) |
|
|
|
if frame.mode == 'I': |
|
frame = frame.point(lambda i: i * (1 / 255)) |
|
|
|
if frame.mode == 'P': |
|
frame = frame.convert("RGBA") |
|
elif 'A' in frame.getbands(): |
|
frame = frame.convert("RGBA") |
|
|
|
|
|
if 'A' in frame.getbands() and bg_color_rgba: |
|
alpha_mask = np.array(frame.getchannel('A')).astype(np.float32) / 255.0 |
|
alpha_mask = 1. - torch.from_numpy(alpha_mask) |
|
bg_image = Image.new("RGBA", frame.size, bg_color_rgba) |
|
|
|
frame = Image.alpha_composite(bg_image, frame) |
|
else: |
|
alpha_mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu") |
|
|
|
image = frame.convert("RGB") |
|
|
|
if len(output_images) == 0: |
|
w = image.size[0] |
|
h = image.size[1] |
|
|
|
if image.size[0] != w or image.size[1] != h: |
|
continue |
|
if resize: |
|
image = image.resize((width, height), Image.Resampling.BILINEAR) |
|
|
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = torch.from_numpy(image)[None,] |
|
|
|
c = mask_channel[0].upper() |
|
if c in frame.getbands(): |
|
if resize: |
|
frame = frame.resize((width, height), Image.Resampling.BILINEAR) |
|
mask = np.array(frame.getchannel(c)).astype(np.float32) / 255.0 |
|
mask = torch.from_numpy(mask) |
|
if c == 'A' and bg_color_rgba: |
|
mask = alpha_mask |
|
elif c == 'A': |
|
mask = 1. - mask |
|
else: |
|
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu") |
|
|
|
output_images.append(image) |
|
output_masks.append(mask.unsqueeze(0)) |
|
|
|
if len(output_images) > 1 and img.format not in excluded_formats: |
|
output_image = torch.cat(output_images, dim=0) |
|
output_mask = torch.cat(output_masks, dim=0) |
|
else: |
|
output_image = output_images[0] |
|
output_mask = output_masks[0] |
|
if repeat > 1: |
|
output_image = output_image.repeat(repeat, 1, 1, 1) |
|
output_mask = output_mask.repeat(repeat, 1, 1) |
|
|
|
return (output_image, output_mask, width, height, image_path) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@classmethod |
|
def VALIDATE_INPUTS(s, image): |
|
if not folder_paths.exists_annotated_filepath(image): |
|
return "Invalid image file: {}".format(image) |
|
|
|
return True |
|
|
|
import hashlib |
|
class LoadImagesFromFolderKJ: |
|
|
|
folder_hashes = {} |
|
|
|
@classmethod |
|
def IS_CHANGED(cls, folder, **kwargs): |
|
if not os.path.isdir(folder): |
|
return float("NaN") |
|
|
|
valid_extensions = ['.jpg', '.jpeg', '.png', '.webp', '.tga'] |
|
include_subfolders = kwargs.get('include_subfolders', False) |
|
|
|
file_data = [] |
|
if include_subfolders: |
|
for root, _, files in os.walk(folder): |
|
for file in files: |
|
if any(file.lower().endswith(ext) for ext in valid_extensions): |
|
path = os.path.join(root, file) |
|
try: |
|
mtime = os.path.getmtime(path) |
|
file_data.append((path, mtime)) |
|
except OSError: |
|
pass |
|
else: |
|
for file in os.listdir(folder): |
|
if any(file.lower().endswith(ext) for ext in valid_extensions): |
|
path = os.path.join(folder, file) |
|
try: |
|
mtime = os.path.getmtime(path) |
|
file_data.append((path, mtime)) |
|
except OSError: |
|
pass |
|
|
|
file_data.sort() |
|
|
|
combined_hash = hashlib.md5() |
|
combined_hash.update(folder.encode('utf-8')) |
|
combined_hash.update(str(len(file_data)).encode('utf-8')) |
|
|
|
for path, mtime in file_data: |
|
combined_hash.update(f"{path}:{mtime}".encode('utf-8')) |
|
|
|
current_hash = combined_hash.hexdigest() |
|
|
|
old_hash = cls.folder_hashes.get(folder) |
|
cls.folder_hashes[folder] = current_hash |
|
|
|
if old_hash == current_hash: |
|
return old_hash |
|
|
|
return current_hash |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"folder": ("STRING", {"default": ""}), |
|
"width": ("INT", {"default": 1024, "min": -1, "step": 1}), |
|
"height": ("INT", {"default": 1024, "min": -1, "step": 1}), |
|
"keep_aspect_ratio": (["crop", "pad", "stretch",],), |
|
}, |
|
"optional": { |
|
"image_load_cap": ("INT", {"default": 0, "min": 0, "step": 1}), |
|
"start_index": ("INT", {"default": 0, "min": 0, "step": 1}), |
|
"include_subfolders": ("BOOLEAN", {"default": False}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "MASK", "INT", "STRING",) |
|
RETURN_NAMES = ("image", "mask", "count", "image_path",) |
|
FUNCTION = "load_images" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = """Loads images from a folder into a batch, images are resized and loaded into a batch.""" |
|
|
|
def load_images(self, folder, width, height, image_load_cap, start_index, keep_aspect_ratio, include_subfolders=False): |
|
if not os.path.isdir(folder): |
|
raise FileNotFoundError(f"Folder '{folder} cannot be found.'") |
|
|
|
valid_extensions = ['.jpg', '.jpeg', '.png', '.webp', '.tga'] |
|
image_paths = [] |
|
if include_subfolders: |
|
for root, _, files in os.walk(folder): |
|
for file in files: |
|
if any(file.lower().endswith(ext) for ext in valid_extensions): |
|
image_paths.append(os.path.join(root, file)) |
|
else: |
|
for file in os.listdir(folder): |
|
if any(file.lower().endswith(ext) for ext in valid_extensions): |
|
image_paths.append(os.path.join(folder, file)) |
|
|
|
dir_files = sorted(image_paths) |
|
|
|
if len(dir_files) == 0: |
|
raise FileNotFoundError(f"No files in directory '{folder}'.") |
|
|
|
|
|
dir_files = dir_files[start_index:] |
|
|
|
images = [] |
|
masks = [] |
|
image_path_list = [] |
|
|
|
limit_images = False |
|
if image_load_cap > 0: |
|
limit_images = True |
|
image_count = 0 |
|
|
|
for image_path in dir_files: |
|
if os.path.isdir(image_path): |
|
continue |
|
if limit_images and image_count >= image_load_cap: |
|
break |
|
i = Image.open(image_path) |
|
i = ImageOps.exif_transpose(i) |
|
|
|
|
|
if width == -1 and height == -1: |
|
width = i.size[0] |
|
height = i.size[1] |
|
if i.size != (width, height): |
|
i = self.resize_with_aspect_ratio(i, width, height, keep_aspect_ratio) |
|
|
|
|
|
image = i.convert("RGB") |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = torch.from_numpy(image)[None,] |
|
|
|
if 'A' in i.getbands(): |
|
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0 |
|
mask = 1. - torch.from_numpy(mask) |
|
if mask.shape != (height, width): |
|
mask = torch.nn.functional.interpolate(mask.unsqueeze(0).unsqueeze(0), |
|
size=(height, width), |
|
mode='bilinear', |
|
align_corners=False).squeeze() |
|
else: |
|
mask = torch.zeros((height, width), dtype=torch.float32, device="cpu") |
|
|
|
images.append(image) |
|
masks.append(mask) |
|
image_path_list.append(image_path) |
|
image_count += 1 |
|
|
|
if len(images) == 1: |
|
return (images[0], masks[0], 1, image_path_list) |
|
|
|
elif len(images) > 1: |
|
image1 = images[0] |
|
mask1 = masks[0].unsqueeze(0) |
|
|
|
for image2 in images[1:]: |
|
image1 = torch.cat((image1, image2), dim=0) |
|
|
|
for mask2 in masks[1:]: |
|
mask1 = torch.cat((mask1, mask2.unsqueeze(0)), dim=0) |
|
|
|
return (image1, mask1, len(images), image_path_list) |
|
def resize_with_aspect_ratio(self, img, width, height, mode): |
|
if mode == "stretch": |
|
return img.resize((width, height), Image.Resampling.LANCZOS) |
|
|
|
img_width, img_height = img.size |
|
aspect_ratio = img_width / img_height |
|
target_ratio = width / height |
|
|
|
if mode == "crop": |
|
|
|
if aspect_ratio > target_ratio: |
|
|
|
new_width = int(height * aspect_ratio) |
|
img = img.resize((new_width, height), Image.Resampling.LANCZOS) |
|
left = (new_width - width) // 2 |
|
return img.crop((left, 0, left + width, height)) |
|
else: |
|
|
|
new_height = int(width / aspect_ratio) |
|
img = img.resize((width, new_height), Image.Resampling.LANCZOS) |
|
top = (new_height - height) // 2 |
|
return img.crop((0, top, width, top + height)) |
|
|
|
elif mode == "pad": |
|
pad_color = self.get_edge_color(img) |
|
|
|
if aspect_ratio > target_ratio: |
|
|
|
new_height = int(width / aspect_ratio) |
|
img = img.resize((width, new_height), Image.Resampling.LANCZOS) |
|
padding = (height - new_height) // 2 |
|
padded = Image.new('RGBA', (width, height), pad_color) |
|
padded.paste(img, (0, padding)) |
|
return padded |
|
else: |
|
|
|
new_width = int(height * aspect_ratio) |
|
img = img.resize((new_width, height), Image.Resampling.LANCZOS) |
|
padding = (width - new_width) // 2 |
|
padded = Image.new('RGBA', (width, height), pad_color) |
|
padded.paste(img, (padding, 0)) |
|
return padded |
|
def get_edge_color(self, img): |
|
from PIL import ImageStat |
|
"""Sample edges and return dominant color""" |
|
width, height = img.size |
|
img = img.convert('RGBA') |
|
|
|
|
|
top = img.crop((0, 0, width, 1)) |
|
bottom = img.crop((0, height-1, width, height)) |
|
left = img.crop((0, 0, 1, height)) |
|
right = img.crop((width-1, 0, width, height)) |
|
|
|
|
|
edges = Image.new('RGBA', (width*2 + height*2, 1)) |
|
edges.paste(top, (0, 0)) |
|
edges.paste(bottom, (width, 0)) |
|
edges.paste(left.resize((height, 1)), (width*2, 0)) |
|
edges.paste(right.resize((height, 1)), (width*2 + height, 0)) |
|
|
|
|
|
stat = ImageStat.Stat(edges) |
|
median = tuple(map(int, stat.median)) |
|
return median |
|
|
|
|
|
class ImageGridtoBatch: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"image": ("IMAGE", ), |
|
"columns": ("INT", {"default": 3, "min": 1, "max": 8, "tooltip": "The number of columns in the grid."}), |
|
"rows": ("INT", {"default": 0, "min": 1, "max": 8, "tooltip": "The number of rows in the grid. Set to 0 for automatic calculation."}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "decompose" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = "Converts a grid of images to a batch of images." |
|
|
|
def decompose(self, image, columns, rows): |
|
B, H, W, C = image.shape |
|
print("input size: ", image.shape) |
|
|
|
|
|
cell_width = W // columns |
|
|
|
if rows == 0: |
|
|
|
rows = H // cell_height |
|
else: |
|
|
|
cell_height = H // rows |
|
|
|
|
|
image = image[:, :rows*cell_height, :columns*cell_width, :] |
|
|
|
|
|
image = image.view(B, rows, cell_height, columns, cell_width, C) |
|
image = image.permute(0, 1, 3, 2, 4, 5).contiguous() |
|
image = image.view(B, rows * columns, cell_height, cell_width, C) |
|
|
|
|
|
img_tensor = image.view(-1, cell_height, cell_width, C) |
|
|
|
return (img_tensor,) |
|
|
|
class SaveImageKJ: |
|
def __init__(self): |
|
self.type = "output" |
|
self.prefix_append = "" |
|
self.compress_level = 4 |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"images": ("IMAGE", {"tooltip": "The images to save."}), |
|
"filename_prefix": ("STRING", {"default": "ComfyUI", "tooltip": "The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."}), |
|
"output_folder": ("STRING", {"default": "output", "tooltip": "The folder to save the images to."}), |
|
}, |
|
"optional": { |
|
"caption_file_extension": ("STRING", {"default": ".txt", "tooltip": "The extension for the caption file."}), |
|
"caption": ("STRING", {"forceInput": True, "tooltip": "string to save as .txt file"}), |
|
}, |
|
"hidden": { |
|
"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO" |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("STRING",) |
|
RETURN_NAMES = ("filename",) |
|
FUNCTION = "save_images" |
|
|
|
OUTPUT_NODE = True |
|
|
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = "Saves the input images to your ComfyUI output directory." |
|
|
|
def save_images(self, images, output_folder, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None, caption=None, caption_file_extension=".txt"): |
|
filename_prefix += self.prefix_append |
|
|
|
if os.path.isabs(output_folder): |
|
if not os.path.exists(output_folder): |
|
os.makedirs(output_folder, exist_ok=True) |
|
full_output_folder = output_folder |
|
_, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, output_folder, images[0].shape[1], images[0].shape[0]) |
|
else: |
|
self.output_dir = folder_paths.get_output_directory() |
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0]) |
|
|
|
results = list() |
|
for (batch_number, image) in enumerate(images): |
|
i = 255. * image.cpu().numpy() |
|
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) |
|
metadata = None |
|
if not args.disable_metadata: |
|
metadata = PngInfo() |
|
if prompt is not None: |
|
metadata.add_text("prompt", json.dumps(prompt)) |
|
if extra_pnginfo is not None: |
|
for x in extra_pnginfo: |
|
metadata.add_text(x, json.dumps(extra_pnginfo[x])) |
|
|
|
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number)) |
|
base_file_name = f"{filename_with_batch_num}_{counter:05}_" |
|
file = f"{base_file_name}.png" |
|
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=self.compress_level) |
|
results.append({ |
|
"filename": file, |
|
"subfolder": subfolder, |
|
"type": self.type |
|
}) |
|
if caption is not None: |
|
txt_file = base_file_name + caption_file_extension |
|
file_path = os.path.join(full_output_folder, txt_file) |
|
with open(file_path, 'w') as f: |
|
f.write(caption) |
|
|
|
counter += 1 |
|
|
|
return file, |
|
|
|
class SaveStringKJ: |
|
def __init__(self): |
|
self.output_dir = folder_paths.get_output_directory() |
|
self.type = "output" |
|
self.prefix_append = "" |
|
self.compress_level = 4 |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"string": ("STRING", {"forceInput": True, "tooltip": "string to save as .txt file"}), |
|
"filename_prefix": ("STRING", {"default": "text", "tooltip": "The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."}), |
|
"output_folder": ("STRING", {"default": "output", "tooltip": "The folder to save the images to."}), |
|
}, |
|
"optional": { |
|
"file_extension": ("STRING", {"default": ".txt", "tooltip": "The extension for the caption file."}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("STRING",) |
|
RETURN_NAMES = ("filename",) |
|
FUNCTION = "save_string" |
|
|
|
OUTPUT_NODE = True |
|
|
|
CATEGORY = "KJNodes/misc" |
|
DESCRIPTION = "Saves the input string to your ComfyUI output directory." |
|
|
|
def save_string(self, string, output_folder, filename_prefix="text", file_extension=".txt"): |
|
filename_prefix += self.prefix_append |
|
|
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) |
|
if output_folder != "output": |
|
if not os.path.exists(output_folder): |
|
os.makedirs(output_folder, exist_ok=True) |
|
full_output_folder = output_folder |
|
|
|
base_file_name = f"{filename_prefix}_{counter:05}_" |
|
results = list() |
|
|
|
txt_file = base_file_name + file_extension |
|
file_path = os.path.join(full_output_folder, txt_file) |
|
with open(file_path, 'w') as f: |
|
f.write(string) |
|
|
|
return results, |
|
|
|
to_pil_image = T.ToPILImage() |
|
|
|
class FastPreview: |
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"image": ("IMAGE", ), |
|
"format": (["JPEG", "PNG", "WEBP"], {"default": "JPEG"}), |
|
"quality" : ("INT", {"default": 75, "min": 1, "max": 100, "step": 1}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = () |
|
FUNCTION = "preview" |
|
CATEGORY = "KJNodes/experimental" |
|
OUTPUT_NODE = True |
|
DESCRIPTION = "Experimental node for faster image previews by displaying through base64 it without saving to disk." |
|
|
|
def preview(self, image, format, quality): |
|
pil_image = to_pil_image(image[0].permute(2, 0, 1)) |
|
|
|
with io.BytesIO() as buffered: |
|
pil_image.save(buffered, format=format, quality=quality) |
|
img_bytes = buffered.getvalue() |
|
|
|
img_base64 = base64.b64encode(img_bytes).decode('utf-8') |
|
|
|
return { |
|
"ui": {"bg_image": [img_base64]}, |
|
"result": () |
|
} |
|
|
|
class ImageCropByMaskAndResize: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE", ), |
|
"mask": ("MASK", ), |
|
"base_resolution": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }), |
|
"padding": ("INT", { "default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1, }), |
|
"min_crop_resolution": ("INT", { "default": 128, "min": 0, "max": MAX_RESOLUTION, "step": 8, }), |
|
"max_crop_resolution": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }), |
|
|
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "MASK", "BBOX", ) |
|
RETURN_NAMES = ("images", "masks", "bbox",) |
|
FUNCTION = "crop" |
|
CATEGORY = "KJNodes/image" |
|
|
|
def crop_by_mask(self, mask, padding=0, min_crop_resolution=None, max_crop_resolution=None): |
|
iy, ix = (mask == 1).nonzero(as_tuple=True) |
|
h0, w0 = mask.shape |
|
|
|
if iy.numel() == 0: |
|
x_c = w0 / 2.0 |
|
y_c = h0 / 2.0 |
|
width = 0 |
|
height = 0 |
|
else: |
|
x_min = ix.min().item() |
|
x_max = ix.max().item() |
|
y_min = iy.min().item() |
|
y_max = iy.max().item() |
|
|
|
width = x_max - x_min |
|
height = y_max - y_min |
|
|
|
if width > w0 or height > h0: |
|
raise Exception("Masked area out of bounds") |
|
|
|
x_c = (x_min + x_max) / 2.0 |
|
y_c = (y_min + y_max) / 2.0 |
|
|
|
if min_crop_resolution: |
|
width = max(width, min_crop_resolution) |
|
height = max(height, min_crop_resolution) |
|
|
|
if max_crop_resolution: |
|
width = min(width, max_crop_resolution) |
|
height = min(height, max_crop_resolution) |
|
|
|
if w0 <= width: |
|
x0 = 0 |
|
w = w0 |
|
else: |
|
x0 = max(0, x_c - width / 2 - padding) |
|
w = width + 2 * padding |
|
if x0 + w > w0: |
|
x0 = w0 - w |
|
|
|
if h0 <= height: |
|
y0 = 0 |
|
h = h0 |
|
else: |
|
y0 = max(0, y_c - height / 2 - padding) |
|
h = height + 2 * padding |
|
if y0 + h > h0: |
|
y0 = h0 - h |
|
|
|
return (int(x0), int(y0), int(w), int(h)) |
|
|
|
def crop(self, image, mask, base_resolution, padding=0, min_crop_resolution=128, max_crop_resolution=512): |
|
mask = mask.round() |
|
image_list = [] |
|
mask_list = [] |
|
bbox_list = [] |
|
|
|
|
|
bbox_params = [] |
|
aspect_ratios = [] |
|
for i in range(image.shape[0]): |
|
x0, y0, w, h = self.crop_by_mask(mask[i], padding, min_crop_resolution, max_crop_resolution) |
|
bbox_params.append((x0, y0, w, h)) |
|
aspect_ratios.append(w / h) |
|
|
|
|
|
max_w = max([w for x0, y0, w, h in bbox_params]) |
|
max_h = max([h for x0, y0, w, h in bbox_params]) |
|
max_aspect_ratio = max(aspect_ratios) |
|
|
|
|
|
max_w = (max_w + 15) // 16 * 16 |
|
max_h = (max_h + 15) // 16 * 16 |
|
|
|
if max_aspect_ratio > 1: |
|
target_width = base_resolution |
|
target_height = int(base_resolution / max_aspect_ratio) |
|
else: |
|
target_height = base_resolution |
|
target_width = int(base_resolution * max_aspect_ratio) |
|
|
|
for i in range(image.shape[0]): |
|
x0, y0, w, h = bbox_params[i] |
|
|
|
|
|
x_center = x0 + w / 2 |
|
y_center = y0 + h / 2 |
|
|
|
x0_new = int(max(0, x_center - max_w / 2)) |
|
y0_new = int(max(0, y_center - max_h / 2)) |
|
x1_new = int(min(x0_new + max_w, image.shape[2])) |
|
y1_new = int(min(y0_new + max_h, image.shape[1])) |
|
x0_new = x1_new - max_w |
|
y0_new = y1_new - max_h |
|
|
|
cropped_image = image[i][y0_new:y1_new, x0_new:x1_new, :] |
|
cropped_mask = mask[i][y0_new:y1_new, x0_new:x1_new] |
|
|
|
|
|
target_width = (target_width + 15) // 16 * 16 |
|
target_height = (target_height + 15) // 16 * 16 |
|
|
|
cropped_image = cropped_image.unsqueeze(0).movedim(-1, 1) |
|
cropped_image = common_upscale(cropped_image, target_width, target_height, "lanczos", "disabled") |
|
cropped_image = cropped_image.movedim(1, -1).squeeze(0) |
|
|
|
cropped_mask = cropped_mask.unsqueeze(0).unsqueeze(0) |
|
cropped_mask = common_upscale(cropped_mask, target_width, target_height, 'bilinear', "disabled") |
|
cropped_mask = cropped_mask.squeeze(0).squeeze(0) |
|
|
|
image_list.append(cropped_image) |
|
mask_list.append(cropped_mask) |
|
bbox_list.append((x0_new, y0_new, x1_new, y1_new)) |
|
|
|
|
|
return (torch.stack(image_list), torch.stack(mask_list), bbox_list) |
|
|
|
class ImageCropByMask: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE", ), |
|
"mask": ("MASK", ), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", ) |
|
RETURN_NAMES = ("image", ) |
|
FUNCTION = "crop" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = "Crops the input images based on the provided mask." |
|
|
|
def crop(self, image, mask): |
|
B, H, W, C = image.shape |
|
mask = mask.round() |
|
|
|
|
|
crops = [] |
|
|
|
for b in range(B): |
|
|
|
rows = torch.any(mask[min(b, mask.shape[0]-1)] > 0, dim=1) |
|
cols = torch.any(mask[min(b, mask.shape[0]-1)] > 0, dim=0) |
|
|
|
|
|
y_min, y_max = torch.where(rows)[0][[0, -1]] |
|
x_min, x_max = torch.where(cols)[0][[0, -1]] |
|
|
|
|
|
crop = image[b:b+1, y_min:y_max+1, x_min:x_max+1, :] |
|
crops.append(crop) |
|
|
|
|
|
cropped_images = torch.cat(crops, dim=0) |
|
|
|
return (cropped_images, ) |
|
|
|
|
|
|
|
class ImageUncropByMask: |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": |
|
{ |
|
"destination": ("IMAGE",), |
|
"source": ("IMAGE",), |
|
"mask": ("MASK",), |
|
"bbox": ("BBOX",), |
|
}, |
|
} |
|
|
|
CATEGORY = "KJNodes/image" |
|
RETURN_TYPES = ("IMAGE",) |
|
RETURN_NAMES = ("image",) |
|
FUNCTION = "uncrop" |
|
|
|
def uncrop(self, destination, source, mask, bbox=None): |
|
|
|
output_list = [] |
|
|
|
B, H, W, C = destination.shape |
|
|
|
for i in range(source.shape[0]): |
|
x0, y0, x1, y1 = bbox[i] |
|
bbox_height = y1 - y0 |
|
bbox_width = x1 - x0 |
|
|
|
|
|
|
|
resized_source = common_upscale(source[i].unsqueeze(0).movedim(-1, 1), bbox_width, bbox_height, "lanczos", "disabled") |
|
resized_source = resized_source.movedim(1, -1).squeeze(0) |
|
|
|
|
|
resized_mask = common_upscale(mask[i].unsqueeze(0).unsqueeze(0), bbox_width, bbox_height, "bilinear", "disabled") |
|
resized_mask = resized_mask.squeeze(0).squeeze(0) |
|
|
|
|
|
pad_left = x0 |
|
pad_right = W - x1 |
|
pad_top = y0 |
|
pad_bottom = H - y1 |
|
|
|
|
|
padded_source = F.pad(resized_source, pad=(0, 0, pad_left, pad_right, pad_top, pad_bottom), mode='constant', value=0) |
|
padded_mask = F.pad(resized_mask, pad=(pad_left, pad_right, pad_top, pad_bottom), mode='constant', value=0) |
|
|
|
|
|
padded_mask = padded_mask.unsqueeze(2).expand(-1, -1, destination[i].shape[2]) |
|
|
|
padded_source = padded_source.unsqueeze(2).expand(-1, -1, -1, destination[i].shape[2]).squeeze(2) |
|
|
|
|
|
result = destination[i] * (1.0 - padded_mask) + padded_source * padded_mask |
|
|
|
output_list.append(result) |
|
|
|
|
|
return (torch.stack(output_list),) |
|
|
|
class ImageCropByMaskBatch: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"image": ("IMAGE", ), |
|
"masks": ("MASK", ), |
|
"width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }), |
|
"height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }), |
|
"padding": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 1, }), |
|
"preserve_size": ("BOOLEAN", {"default": False}), |
|
"bg_color": ("STRING", {"default": "0, 0, 0", "tooltip": "Color as RGB values in range 0-255, separated by commas."}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "MASK", ) |
|
RETURN_NAMES = ("images", "masks",) |
|
FUNCTION = "crop" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = "Crops the input images based on the provided masks." |
|
|
|
def crop(self, image, masks, width, height, bg_color, padding, preserve_size): |
|
B, H, W, C = image.shape |
|
BM, HM, WM = masks.shape |
|
mask_count = BM |
|
if HM != H or WM != W: |
|
masks = F.interpolate(masks.unsqueeze(1), size=(H, W), mode='nearest-exact').squeeze(1) |
|
print(masks.shape) |
|
output_images = [] |
|
output_masks = [] |
|
|
|
bg_color = [int(x.strip())/255.0 for x in bg_color.split(",")] |
|
|
|
|
|
for i in range(mask_count): |
|
curr_mask = masks[i] |
|
|
|
|
|
y_indices, x_indices = torch.nonzero(curr_mask, as_tuple=True) |
|
if len(y_indices) == 0 or len(x_indices) == 0: |
|
continue |
|
|
|
|
|
min_y = max(0, y_indices.min().item() - padding) |
|
max_y = min(H, y_indices.max().item() + 1 + padding) |
|
min_x = max(0, x_indices.min().item() - padding) |
|
max_x = min(W, x_indices.max().item() + 1 + padding) |
|
|
|
|
|
curr_mask = curr_mask.unsqueeze(-1).expand(-1, -1, C) |
|
|
|
|
|
cropped_img = image[0, min_y:max_y, min_x:max_x, :] |
|
cropped_mask = curr_mask[min_y:max_y, min_x:max_x, :] |
|
|
|
crop_h, crop_w = cropped_img.shape[0:2] |
|
new_w = crop_w |
|
new_h = crop_h |
|
|
|
if not preserve_size or crop_w > width or crop_h > height: |
|
scale = min(width/crop_w, height/crop_h) |
|
new_w = int(crop_w * scale) |
|
new_h = int(crop_h * scale) |
|
|
|
|
|
resized_img = common_upscale(cropped_img.permute(2,0,1).unsqueeze(0), new_w, new_h, "lanczos", "disabled").squeeze(0).permute(1,2,0) |
|
resized_mask = torch.nn.functional.interpolate( |
|
cropped_mask.permute(2,0,1).unsqueeze(0), |
|
size=(new_h, new_w), |
|
mode='nearest' |
|
).squeeze(0).permute(1,2,0) |
|
else: |
|
resized_img = cropped_img |
|
resized_mask = cropped_mask |
|
|
|
|
|
new_img = torch.zeros((height, width, 3), dtype=image.dtype) |
|
new_mask = torch.zeros((height, width), dtype=image.dtype) |
|
|
|
|
|
pad_x = (width - new_w) // 2 |
|
pad_y = (height - new_h) // 2 |
|
new_img[pad_y:pad_y+new_h, pad_x:pad_x+new_w, :] = resized_img |
|
if len(resized_mask.shape) == 3: |
|
resized_mask = resized_mask[:,:,0] |
|
new_mask[pad_y:pad_y+new_h, pad_x:pad_x+new_w] = resized_mask |
|
|
|
output_images.append(new_img) |
|
output_masks.append(new_mask) |
|
|
|
if not output_images: |
|
return (torch.zeros((0, height, width, 3), dtype=image.dtype),) |
|
|
|
out_rgb = torch.stack(output_images, dim=0) |
|
out_masks = torch.stack(output_masks, dim=0) |
|
|
|
|
|
mask_expanded = out_masks.unsqueeze(-1).expand(-1, -1, -1, 3) |
|
background_color = torch.tensor(bg_color, dtype=torch.float32, device=image.device) |
|
out_rgb = out_rgb * mask_expanded + background_color * (1 - mask_expanded) |
|
|
|
return (out_rgb, out_masks) |
|
|
|
class ImagePadKJ: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"image": ("IMAGE", ), |
|
"left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1, }), |
|
"right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1, }), |
|
"top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1, }), |
|
"bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1, }), |
|
"extra_padding": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1, }), |
|
"pad_mode": (["edge", "color"],), |
|
"color": ("STRING", {"default": "0, 0, 0", "tooltip": "Color as RGB values in range 0-255, separated by commas."}), |
|
}, |
|
"optional": { |
|
"mask": ("MASK", ), |
|
"target_width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1, "forceInput": True}), |
|
"target_height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1, "forceInput": True}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "MASK", ) |
|
RETURN_NAMES = ("images", "masks",) |
|
FUNCTION = "pad" |
|
CATEGORY = "KJNodes/image" |
|
DESCRIPTION = "Pad the input image and optionally mask with the specified padding." |
|
|
|
def pad(self, image, left, right, top, bottom, extra_padding, color, pad_mode, mask=None, target_width=None, target_height=None): |
|
B, H, W, C = image.shape |
|
|
|
|
|
if mask is not None: |
|
BM, HM, WM = mask.shape |
|
if HM != H or WM != W: |
|
mask = F.interpolate(mask.unsqueeze(1), size=(H, W), mode='nearest-exact').squeeze(1) |
|
|
|
|
|
bg_color = [int(x.strip())/255.0 for x in color.split(",")] |
|
if len(bg_color) == 1: |
|
bg_color = bg_color * 3 |
|
bg_color = torch.tensor(bg_color, dtype=image.dtype, device=image.device) |
|
|
|
|
|
if target_width is not None and target_height is not None: |
|
if extra_padding > 0: |
|
image = common_upscale(image.movedim(-1, 1), W - extra_padding, H - extra_padding, "lanczos", "disabled").movedim(1, -1) |
|
B, H, W, C = image.shape |
|
|
|
padded_width = target_width |
|
padded_height = target_height |
|
pad_left = (padded_width - W) // 2 |
|
pad_right = padded_width - W - pad_left |
|
pad_top = (padded_height - H) // 2 |
|
pad_bottom = padded_height - H - pad_top |
|
else: |
|
pad_left = left + extra_padding |
|
pad_right = right + extra_padding |
|
pad_top = top + extra_padding |
|
pad_bottom = bottom + extra_padding |
|
|
|
padded_width = W + pad_left + pad_right |
|
padded_height = H + pad_top + pad_bottom |
|
out_image = torch.zeros((B, padded_height, padded_width, C), dtype=image.dtype, device=image.device) |
|
|
|
|
|
for b in range(B): |
|
if pad_mode == "edge": |
|
|
|
|
|
top_edge = image[b, 0, :, :] |
|
bottom_edge = image[b, H-1, :, :] |
|
left_edge = image[b, :, 0, :] |
|
right_edge = image[b, :, W-1, :] |
|
|
|
|
|
out_image[b, :pad_top, :, :] = top_edge.mean(dim=0) |
|
out_image[b, pad_top+H:, :, :] = bottom_edge.mean(dim=0) |
|
out_image[b, :, :pad_left, :] = left_edge.mean(dim=0) |
|
out_image[b, :, pad_left+W:, :] = right_edge.mean(dim=0) |
|
out_image[b, pad_top:pad_top+H, pad_left:pad_left+W, :] = image[b] |
|
else: |
|
|
|
out_image[b, :, :, :] = bg_color.unsqueeze(0).unsqueeze(0) |
|
out_image[b, pad_top:pad_top+H, pad_left:pad_left+W, :] = image[b] |
|
|
|
|
|
if mask is not None: |
|
out_masks = torch.nn.functional.pad( |
|
mask, |
|
(pad_left, pad_right, pad_top, pad_bottom), |
|
mode='replicate' |
|
) |
|
else: |
|
out_masks = torch.ones((B, padded_height, padded_width), dtype=image.dtype, device=image.device) |
|
for m in range(B): |
|
out_masks[m, pad_top:pad_top+H, pad_left:pad_left+W] = 0.0 |
|
|
|
return (out_image, out_masks) |
|
|
|
|
|
class LoadVideosFromFolder: |
|
@classmethod |
|
def __init__(cls): |
|
try: |
|
cls.vhs_nodes = importlib.import_module("ComfyUI-VideoHelperSuite.videohelpersuite") |
|
except ImportError: |
|
try: |
|
cls.vhs_nodes = importlib.import_module("comfyui-videohelpersuite.videohelpersuite") |
|
except ImportError: |
|
raise ImportError("This node requires ComfyUI-VideoHelperSuite to be installed.") |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"video": ("STRING", {"default": "X://insert/path/"},), |
|
"force_rate": ("FLOAT", {"default": 0, "min": 0, "max": 60, "step": 1, "disable": 0}), |
|
"custom_width": ("INT", {"default": 0, "min": 0, "max": 4096, 'disable': 0}), |
|
"custom_height": ("INT", {"default": 0, "min": 0, "max": 4096, 'disable': 0}), |
|
"frame_load_cap": ("INT", {"default": 0, "min": 0, "max": 10000, "step": 1, "disable": 0}), |
|
"skip_first_frames": ("INT", {"default": 0, "min": 0, "max": 10000, "step": 1}), |
|
"select_every_nth": ("INT", {"default": 1, "min": 1, "max": 1000, "step": 1}), |
|
"output_type": (["batch", "grid"], {"default": "batch"}), |
|
"grid_max_columns": ("INT", {"default": 4, "min": 1, "max": 16, "step": 1, "disable": 1}), |
|
"add_label": ( "BOOLEAN", {"default": False} ), |
|
}, |
|
"hidden": { |
|
"force_size": "STRING", |
|
"unique_id": "UNIQUE_ID" |
|
}, |
|
} |
|
|
|
CATEGORY = "KJNodes/misc" |
|
|
|
RETURN_TYPES = ("IMAGE", ) |
|
RETURN_NAMES = ("IMAGE", ) |
|
|
|
FUNCTION = "load_video" |
|
|
|
def load_video(self, output_type, grid_max_columns, add_label=False, **kwargs): |
|
if self.vhs_nodes is None: |
|
raise ImportError("This node requires ComfyUI-VideoHelperSuite to be installed.") |
|
videos_list = [] |
|
filenames = [] |
|
for f in os.listdir(kwargs['video']): |
|
if os.path.isfile(os.path.join(kwargs['video'], f)): |
|
file_parts = f.split('.') |
|
if len(file_parts) > 1 and (file_parts[-1].lower() in ['webm', 'mp4', 'mkv', 'gif', 'mov']): |
|
videos_list.append(os.path.join(kwargs['video'], f)) |
|
filenames.append(f) |
|
print(videos_list) |
|
kwargs.pop('video') |
|
loaded_videos = [] |
|
for idx, video in enumerate(videos_list): |
|
video_tensor = self.vhs_nodes.load_video_nodes.load_video(video=video, **kwargs)[0] |
|
if add_label: |
|
|
|
if video_tensor.dim() == 4: |
|
_, h, w, c = video_tensor.shape |
|
else: |
|
h, w, c = video_tensor.shape |
|
|
|
label_text = filenames[idx].rsplit('.', 1)[0] |
|
font_size = max(16, w // 20) |
|
try: |
|
font = ImageFont.truetype("arial.ttf", font_size) |
|
except: |
|
font = ImageFont.load_default() |
|
dummy_img = Image.new("RGB", (w, 10), (0,0,0)) |
|
draw = ImageDraw.Draw(dummy_img) |
|
text_bbox = draw.textbbox((0,0), label_text, font=font) |
|
extra_padding = max(12, font_size // 2) |
|
label_height = text_bbox[3] - text_bbox[1] + extra_padding |
|
label_img = Image.new("RGB", (w, label_height), (0,0,0)) |
|
draw = ImageDraw.Draw(label_img) |
|
draw.text((w//2 - (text_bbox[2]-text_bbox[0])//2, 4), label_text, font=font, fill=(255,255,255)) |
|
label_np = np.asarray(label_img).astype(np.float32) / 255.0 |
|
label_tensor = torch.from_numpy(label_np) |
|
if c == 1: |
|
label_tensor = label_tensor.mean(dim=2, keepdim=True) |
|
elif c == 4: |
|
alpha = torch.ones((label_height, w, 1), dtype=label_tensor.dtype) |
|
label_tensor = torch.cat([label_tensor, alpha], dim=2) |
|
if video_tensor.dim() == 4: |
|
label_tensor = label_tensor.unsqueeze(0).expand(video_tensor.shape[0], -1, -1, -1) |
|
video_tensor = torch.cat([label_tensor, video_tensor], dim=1) |
|
else: |
|
video_tensor = torch.cat([label_tensor, video_tensor], dim=0) |
|
loaded_videos.append(video_tensor) |
|
if output_type == "batch": |
|
out_tensor = torch.cat(loaded_videos) |
|
elif output_type == "grid": |
|
rows = (len(loaded_videos) + grid_max_columns - 1) // grid_max_columns |
|
|
|
total_slots = rows * grid_max_columns |
|
while len(loaded_videos) < total_slots: |
|
loaded_videos.append(torch.zeros_like(loaded_videos[0])) |
|
|
|
row_tensors = [] |
|
for row_idx in range(rows): |
|
start_idx = row_idx * grid_max_columns |
|
end_idx = start_idx + grid_max_columns |
|
row_videos = loaded_videos[start_idx:end_idx] |
|
|
|
heights = [v.shape[1] for v in row_videos] |
|
max_height = max(heights) |
|
padded_row_videos = [] |
|
for v in row_videos: |
|
pad_height = max_height - v.shape[1] |
|
if pad_height > 0: |
|
|
|
if v.dim() == 4: |
|
pad = (0,0, 0,0, 0,pad_height, 0,0) |
|
v = torch.nn.functional.pad(v, (0,0,0,0,0,pad_height,0,0)) |
|
else: |
|
v = torch.nn.functional.pad(v, (0,0,0,0,pad_height,0)) |
|
padded_row_videos.append(v) |
|
row_tensor = torch.cat(padded_row_videos, dim=2) |
|
row_tensors.append(row_tensor) |
|
out_tensor = torch.cat(row_tensors, dim=1) |
|
print(out_tensor.shape) |
|
return out_tensor, |
|
|
|
@classmethod |
|
def IS_CHANGED(s, video, **kwargs): |
|
if s.vhs_nodes is not None: |
|
return s.vhs_nodes.utils.hash_path(video) |
|
return None |