wan2-2-T2V-EXP / app.py
rahul7star's picture
Update app.py
a70453e verified
# PyTorch 2.8 (temporary hack)
import os
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
import logging
# Actual demo code
import spaces
import torch
from diffusers import WanPipeline, AutoencoderKLWan
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video
import gradio as gr
import tempfile
import numpy as np
from PIL import Image
import random
import gc
from optimization import optimize_pipeline_
import ffmpeg
import tempfile
import os
MODEL_ID = "Wan-AI/Wan2.2-T2V-A14B-Diffusers"
LANDSCAPE_WIDTH = 832
LANDSCAPE_HEIGHT = 480
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81
MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS,1)
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS,1)
vae = AutoencoderKLWan.from_pretrained("Wan-AI/Wan2.2-T2V-A14B-Diffusers", subfolder="vae", torch_dtype=torch.float32)
pipe = WanPipeline.from_pretrained(MODEL_ID,
transformer=WanTransformer3DModel.from_pretrained('linoyts/Wan2.2-T2V-A14B-Diffusers-BF16',
subfolder='transformer',
torch_dtype=torch.bfloat16,
device_map='cuda',
),
transformer_2=WanTransformer3DModel.from_pretrained('linoyts/Wan2.2-T2V-A14B-Diffusers-BF16',
subfolder='transformer_2',
torch_dtype=torch.bfloat16,
device_map='cuda',
),
vae=vae,
torch_dtype=torch.bfloat16,
).to('cuda')
for i in range(3):
gc.collect()
torch.cuda.synchronize()
torch.cuda.empty_cache()
optimize_pipeline_(pipe,
prompt='prompt',
height=LANDSCAPE_HEIGHT,
width=LANDSCAPE_WIDTH,
num_frames=MAX_FRAMES_MODEL,
)
default_prompt_t2v = "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"
from huggingface_hub import HfApi, upload_file
import os
import uuid
import os
import uuid
import logging
from datetime import datetime
from huggingface_hub import HfApi, upload_file
import tempfile
import random
import logging
from datetime import datetime
import uuid
import numpy as np
import torch
import ffmpeg
HF_MODEL = os.environ.get("HF_UPLOAD_REPO", "rahul7star/VideoExplain")
def upload_to_hf(video_path: str, summary_text: str):
api = HfApi()
# Create date-based folder
today_str = datetime.now().strftime("%Y-%m-%d")
unique_subfolder = f"WANT2V-EXP-upload_{uuid.uuid4().hex[:8]}"
hf_folder = f"{today_str}/{unique_subfolder}"
logging.info(f"Uploading to HF folder: {hf_folder}")
# Upload video
video_filename = os.path.basename(video_path)
video_hf_path = f"{hf_folder}/{video_filename}"
upload_file(
path_or_fileobj=video_path,
path_in_repo=video_hf_path,
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
)
logging.info(f"✅ Uploaded video: {video_hf_path}")
# Upload summary
summary_file = os.path.join(tempfile.gettempdir(), "summary.txt")
with open(summary_file, "w", encoding="utf-8") as f:
f.write(summary_text)
summary_hf_path = f"{hf_folder}/summary.txt"
upload_file(
path_or_fileobj=summary_file,
path_in_repo=summary_hf_path,
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
)
logging.info(f"✅ Uploaded summary: {summary_hf_path}")
return hf_folder
import subprocess
import tempfile
import logging
import shutil
import os
from huggingface_hub import HfApi, upload_file
from datetime import datetime
import uuid
HF_MODEL = os.environ.get("HF_UPLOAD_REPO", "rahul7star/VideoExplain")
def upscale_and_upload_4k(input_video_path: str, summary_text: str) -> str:
"""
Upscale a video to 4K and upload it to Hugging Face Hub without replacing the original file.
Args:
input_video_path (str): Path to the original video.
summary_text (str): Text summary to upload alongside the video.
Returns:
str: Hugging Face folder path where the video and summary were uploaded.
"""
logging.info(f"Upscaling video to 4K for upload: {input_video_path}")
# Create a temporary file for the upscaled video
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_upscaled:
upscaled_path = tmp_upscaled.name
# FFmpeg upscale command
cmd = [
"ffmpeg",
"-i", input_video_path,
"-vf", "scale=3840:2160:flags=lanczos",
"-c:v", "libx264",
"-crf", "18",
"-preset", "slow",
"-y",
upscaled_path,
]
try:
subprocess.run(cmd, check=True, capture_output=True)
logging.info(f"✅ Upscaled video created at: {upscaled_path}")
except subprocess.CalledProcessError as e:
logging.error(f"FFmpeg failed:\n{e.stderr.decode()}")
raise
# Create a date-based folder on HF
today_str = datetime.now().strftime("%Y-%m-%d")
unique_subfolder = f"Upload-4K-{uuid.uuid4().hex[:8]}"
hf_folder = f"{today_str}/{unique_subfolder}"
# Upload video
video_filename = os.path.basename(input_video_path)
video_hf_path = f"{hf_folder}/{video_filename}"
upload_file(
path_or_fileobj=upscaled_path,
path_in_repo=video_hf_path,
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
)
logging.info(f"✅ Uploaded 4K video to HF: {video_hf_path}")
# Upload summary.txt
summary_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt").name
with open(summary_file, "w", encoding="utf-8") as f:
f.write(summary_text)
summary_hf_path = f"{hf_folder}/summary.txt"
upload_file(
path_or_fileobj=summary_file,
path_in_repo=summary_hf_path,
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
)
logging.info(f"✅ Uploaded summary to HF: {summary_hf_path}")
# Cleanup temporary files
os.remove(upscaled_path)
os.remove(summary_file)
return hf_folder
def save_video_ffmpeg(frames: list, video_path: str, fps: int = FIXED_FPS):
h, w, c = frames[0].shape
process = (
ffmpeg
.input(
'pipe:', format='rawvideo', pix_fmt='rgb24',
s=f'{w}x{h}', framerate=fps
)
.output(
video_path,
pix_fmt='yuv420p',
vcodec='libx264',
crf=18,
preset='slow'
)
.overwrite_output()
.run_async(pipe_stdin=True)
)
for frame in frames:
process.stdin.write(frame.astype(np.uint8).tobytes())
process.stdin.close()
process.wait()
logging.info(f"✅ Video saved to {video_path}")
def upload_to_hf0(video_path, summary_text):
api = HfApi()
# Create a date-based folder (YYYY-MM-DD)
today_str = datetime.now().strftime("%Y-%m-%d")
date_folder = today_str
# Generate a unique subfolder for this upload
unique_subfolder = f"WANT2V-EXP-upload_{uuid.uuid4().hex[:8]}"
hf_folder = f"{date_folder}/{unique_subfolder}"
logging.info(f"Uploading files to HF folder: {hf_folder} in repo {HF_MODEL}")
# Upload video
video_filename = os.path.basename(video_path)
video_hf_path = f"{hf_folder}/{video_filename}"
upload_file(
path_or_fileobj=video_path,
path_in_repo=video_hf_path,
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
)
logging.info(f"✅ Uploaded video to HF: {video_hf_path}")
# Upload summary.txt
summary_file = "/tmp/summary.txt"
with open(summary_file, "w", encoding="utf-8") as f:
f.write(summary_text)
summary_hf_path = f"{hf_folder}/summary.txt"
upload_file(
path_or_fileobj=summary_file,
path_in_repo=summary_hf_path,
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
)
logging.info(f"✅ Uploaded summary to HF: {summary_hf_path}")
return hf_folder
def get_duration(
prompt,
negative_prompt,
duration_seconds,
guidance_scale,
guidance_scale_2,
steps,
seed,
randomize_seed,
progress,
):
return steps * 15
@spaces.GPU(duration=get_duration)
def generate_video(
prompt,
negative_prompt=default_negative_prompt,
duration_seconds=MAX_DURATION,
guidance_scale=1,
guidance_scale_2=3,
steps=4,
seed=42,
randomize_seed=False,
progress=gr.Progress(track_tqdm=True),
):
print("Prompt:", prompt)
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
# Generate frames
output_frames_list = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=LANDSCAPE_HEIGHT,
width=LANDSCAPE_WIDTH,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
guidance_scale_2=float(guidance_scale_2),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed),
).frames[0]
video_path = os.path.join(tempfile.gettempdir(), f"video_{current_seed}.mp4")
# Export frames to video (this is the high-quality video you see in Gradio)
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
#hf_folder = upload_to_hf(video_path, prompt)
upscale_and_upload_4k(video_path,prompt)
return video_path, current_seed
with gr.Blocks() as demo:
gr.Markdown("# Fast 4 steps Wan 2.2 T2V (14B) with Lightning LoRA")
gr.Markdown("run Wan 2.2 in just 4-8 steps, with [Wan 2.2 Lightning LoRA](https://huggingface.co/Kijai/WanVideo_comfy/tree/main/Wan22-Lightning), fp8 quantization & AoT compilation - compatible with 🧨 diffusers and ZeroGPU⚡️")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_t2v)
duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=MAX_DURATION, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps")
guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise stage")
guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=3, label="Guidance Scale 2 - low noise stage")
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
ui_inputs = [
prompt_input,
negative_prompt_input, duration_seconds_input,
guidance_scale_input, guidance_scale_2_input, steps_slider, seed_input, randomize_seed_checkbox
]
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
gr.Examples(
examples=[
[
"POV selfie video, white cat with sunglasses standing on surfboard, relaxed smile, tropical beach behind (clear water, green hills, blue sky with clouds). Surfboard tips, cat falls into ocean, camera plunges underwater with bubbles and sunlight beams. Brief underwater view of cat’s face, then cat resurfaces, still filming selfie, playful summer vacation mood.",
],
[
"Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
],
[
"A cinematic shot of a boat sailing on a calm sea at sunset.",
],
[
"Drone footage flying over a futuristic city with flying cars.",
],
],
inputs=[prompt_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy"
)
if __name__ == "__main__":
demo.queue().launch(mcp_server=True)