|
import os
|
|
import hashlib
|
|
import io
|
|
import json
|
|
import pandas as pd
|
|
from langchain_community.vectorstores import FAISS
|
|
from PyPDF2 import PdfReader
|
|
from docx import Document
|
|
from langchain_huggingface import HuggingFaceEmbeddings
|
|
|
|
class FileHandler:
|
|
def __init__(self, vector_db_path,api_token):
|
|
self.vector_db_path = vector_db_path
|
|
|
|
self.embeddings = HuggingFaceEmbeddings(
|
|
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
|
model_kwargs={"token": api_token},
|
|
)
|
|
|
|
def handle_file_upload(self, file, document_name, document_description):
|
|
try:
|
|
content = file.read()
|
|
file_hash = hashlib.md5(content).hexdigest()
|
|
file_key = f"{file.name}_{file_hash}"
|
|
vector_store_dir = os.path.join(self.vector_db_path, file_key)
|
|
os.makedirs(vector_store_dir, exist_ok=True)
|
|
vector_store_path = os.path.join(vector_store_dir, "index.faiss")
|
|
|
|
if os.path.exists(vector_store_path):
|
|
return {"message": "File already processed."}
|
|
|
|
|
|
if file.name.endswith(".pdf"):
|
|
texts, metadatas = self.load_and_split_pdf(file)
|
|
elif file.name.endswith(".docx"):
|
|
texts, metadatas = self.load_and_split_docx(file)
|
|
elif file.name.endswith(".txt"):
|
|
texts, metadatas = self.load_and_split_txt(content)
|
|
elif file.name.endswith(".xlsx"):
|
|
texts, metadatas = self.load_and_split_table(content)
|
|
elif file.name.endswith(".csv"):
|
|
texts, metadatas = self.load_and_split_csv(content)
|
|
else:
|
|
raise ValueError("Unsupported file format.")
|
|
|
|
if not texts:
|
|
return {"message": "No text extracted from the file. Check the file content."}
|
|
|
|
|
|
vector_store = FAISS.from_texts(texts, embedding=self.embeddings, metadatas=metadatas)
|
|
vector_store.save_local(vector_store_dir)
|
|
|
|
metadata = {
|
|
"filename": file.name,
|
|
"document_name": document_name,
|
|
"document_description": document_description,
|
|
"file_size": len(content),
|
|
}
|
|
metadata_path = os.path.join(vector_store_dir, "metadata.json")
|
|
with open(metadata_path, 'w') as md_file:
|
|
json.dump(metadata, md_file)
|
|
|
|
return {"message": "File processed successfully."}
|
|
except Exception as e:
|
|
return {"message": f"Error processing file: {str(e)}"}
|
|
|
|
|
|
def load_and_split_pdf(self, file):
|
|
reader = PdfReader(file)
|
|
texts = []
|
|
metadatas = []
|
|
for page_num, page in enumerate(reader.pages):
|
|
text = page.extract_text()
|
|
if text:
|
|
texts.append(text)
|
|
metadatas.append({"page_number": page_num + 1})
|
|
return texts, metadatas
|
|
|
|
def load_and_split_docx(self, file):
|
|
doc = Document(file)
|
|
texts = []
|
|
metadatas = []
|
|
for para_num, paragraph in enumerate(doc.paragraphs):
|
|
if paragraph.text:
|
|
texts.append(paragraph.text)
|
|
metadatas.append({"paragraph_number": para_num + 1})
|
|
return texts, metadatas
|
|
|
|
def load_and_split_txt(self, content):
|
|
text = content.decode("utf-8")
|
|
lines = text.split('\n')
|
|
texts = [line for line in lines if line.strip()]
|
|
metadatas = [{}] * len(texts)
|
|
return texts, metadatas
|
|
|
|
def load_and_split_table(self, content):
|
|
excel_data = pd.read_excel(io.BytesIO(content), sheet_name=None)
|
|
texts = []
|
|
metadatas = []
|
|
for sheet_name, df in excel_data.items():
|
|
df = df.dropna(how='all', axis=0).dropna(how='all', axis=1)
|
|
df = df.fillna('N/A')
|
|
for _, row in df.iterrows():
|
|
row_dict = row.to_dict()
|
|
|
|
row_text = ', '.join([f"{key}: {value}" for key, value in row_dict.items()])
|
|
texts.append(row_text)
|
|
metadatas.append({"sheet_name": sheet_name})
|
|
return texts, metadatas
|
|
|
|
def load_and_split_csv(self, content):
|
|
csv_data = pd.read_csv(io.StringIO(content.decode('utf-8')))
|
|
texts = []
|
|
metadatas = []
|
|
csv_data = csv_data.dropna(how='all', axis=0).dropna(how='all', axis=1)
|
|
csv_data = csv_data.fillna('N/A')
|
|
for _, row in csv_data.iterrows():
|
|
row_dict = row.to_dict()
|
|
row_text = ', '.join([f"{key}: {value}" for key, value in row_dict.items()])
|
|
texts.append(row_text)
|
|
metadatas.append({"row_index": _})
|
|
return texts, metadatas
|
|
|
|
|