methunraj
feat: Implement revenue data organization workflow with JSON output
8b21729
REVENUE EXCEL REPORT GENERATION TASK
=== YOUR MISSION ===
Create a professional Excel report from arranged_financial_data.json focusing ONLY on revenue data.
Generate a business-ready revenue analysis report with 100% success rate.
You are using gemini-2.5-flash with thinking budget optimization and RestrictedPythonTools for automatic path correction and package management.
=== WHAT TO CREATE ===
β€’ Professional Excel file with revenue-focused worksheets
β€’ Clean, business-ready formatting for executives
β€’ Focus exclusively on revenue analysis and visualization
β€’ File ready for immediate business use
=== MANDATORY EXECUTION SEQUENCE ===
**STEP 1: Environment Setup (30 seconds)**
```python
# RestrictedPythonTools automatically installs packages when needed
# Just use run_python_code() - packages will be auto-installed
import pandas as pd
import openpyxl
print("Packages will be auto-installed by RestrictedPythonTools")
```
**STEP 2: Revenue Data Loading (30 seconds)**
- read_file('arranged_financial_data.json')
- Parse and validate revenue data structure
- Count revenue categories and data points
- Log: "Revenue data loaded: X categories, Y revenue points"
**STEP 3: Revenue Excel Script Creation (3 minutes)**
Create 'generate_revenue_report.py' with this EXACT structure:
```python
#!/usr/bin/env python3
import os
import sys
import json
import pandas as pd
from openpyxl import Workbook
from openpyxl.styles import Font, PatternFill, Border, Side, Alignment
from datetime import datetime
import logging
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def main():
try:
# Load revenue data
logger.info('Loading revenue data from arranged_financial_data.json')
with open('arranged_financial_data.json', 'r', encoding='utf-8') as f:
revenue_data = json.load(f)
# Create professional workbook
logger.info('Creating revenue analysis workbook')
wb = Workbook()
wb.remove(wb.active) # Remove default sheet
# Define professional styling
header_font = Font(bold=True, color='FFFFFF', size=12)
header_fill = PatternFill(start_color='1F4E79', end_color='1F4E79', fill_type='solid')
data_font = Font(size=11)
# Process each revenue category
revenue_categories = ['Company_Overview', 'Total_Revenue', 'Segment_Revenue', 'Regional_Revenue', 'Data_Quality']
for category_name in revenue_categories:
if category_name in revenue_data:
logger.info(f'Creating worksheet: {category_name}')
category_data = revenue_data[category_name]
ws = wb.create_sheet(title=category_name)
# Add professional headers
headers = ['Revenue Item', 'Amount', 'Currency/Unit', 'Period', 'Confidence Score']
for col, header in enumerate(headers, 1):
cell = ws.cell(row=1, column=col, value=header)
cell.font = header_font
cell.fill = header_fill
cell.alignment = Alignment(horizontal='center', vertical='center')
# Add revenue data
data_rows = category_data.get('data', [])
for row_idx, data_row in enumerate(data_rows, 2):
ws.cell(row=row_idx, column=1, value=data_row.get('item', '')).font = data_font
ws.cell(row=row_idx, column=2, value=data_row.get('value', '')).font = data_font
ws.cell(row=row_idx, column=3, value=data_row.get('unit', '')).font = data_font
ws.cell(row=row_idx, column=4, value=data_row.get('period', '')).font = data_font
ws.cell(row=row_idx, column=5, value=data_row.get('confidence', '')).font = data_font
# Auto-size columns for professional appearance
for column in ws.columns:
max_length = 0
column_letter = column[0].column_letter
for cell in column:
try:
if len(str(cell.value or '')) > max_length:
max_length = len(str(cell.value or ''))
except:
pass
adjusted_width = min(max(max_length + 2, 15), 50)
ws.column_dimensions[column_letter].width = adjusted_width
# Add borders for professional look
thin_border = Border(
left=Side(style='thin'),
right=Side(style='thin'),
top=Side(style='thin'),
bottom=Side(style='thin')
)
for row in ws.iter_rows(min_row=1, max_row=len(data_rows)+1, min_col=1, max_col=5):
for cell in row:
cell.border = thin_border
# Save with professional filename
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
filename = f'Revenue_Analysis_Report_{timestamp}.xlsx'
wb.save(filename)
logger.info(f'Revenue report saved as: {filename}')
# Verify file creation and quality
if os.path.exists(filename):
file_size = os.path.getsize(filename)
if file_size > 5000: # Minimum 5KB
logger.info(f'SUCCESS: Revenue report created successfully')
logger.info(f'File: {filename} ({file_size:,} bytes)')
logger.info(f'Worksheets: {len(wb.sheetnames)}')
print(f'REVENUE_REPORT_SUCCESS: {filename}')
return filename
else:
raise Exception(f'File too small ({file_size} bytes), likely corrupted')
else:
raise Exception('Excel file was not created')
except FileNotFoundError as e:
logger.error(f'Revenue data file not found: {str(e)}')
sys.exit(1)
except json.JSONDecodeError as e:
logger.error(f'Invalid JSON in revenue data: {str(e)}')
sys.exit(1)
except Exception as e:
logger.error(f'Error creating revenue report: {str(e)}')
import traceback
logger.error(f'Traceback: {traceback.format_exc()}')
sys.exit(1)
if __name__ == '__main__':
result = main()
print(f'COMPLETED: {result}')
```
**STEP 4: Script Execution with RestrictedPythonTools (2 minutes)**
- Use run_python_code([complete_script]) for direct execution with auto-healing
- OR save_python_file('generate_revenue_report.py', [complete_script]) + run_shell_command('python generate_revenue_report.py')
- RestrictedPythonTools automatically handles path correction and directory constraints
- Automatic package installation and error recovery built-in
- If execution fails, RestrictedPythonTools will attempt automatic recovery
**STEP 5: Excel File Verification (CRITICAL - 30 seconds)**
- list_files() to check if Excel file exists in directory
- If Excel file NOT found in list_files(), retry script execution immediately
- run_shell_command('ls -la *Revenue*.xlsx') for detailed file info
- run_shell_command('du -h *Revenue*.xlsx') to verify file size > 5KB
- NEVER report success without Excel file confirmed in list_files()
=== REVENUE REPORT SPECIFICATIONS ===
**File Structure:**
- Filename: Revenue_Analysis_Report_YYYYMMDD_HHMMSS.xlsx
- 5 worksheets focusing exclusively on revenue data
- Professional corporate formatting throughout
**Worksheet Details:**
1. **Company_Overview** - Company info, document metadata
2. **Total_Revenue** - Consolidated revenue figures and totals
3. **Segment_Revenue** - Revenue by business segment/division
4. **Regional_Revenue** - Revenue by geographic region
5. **Data_Quality** - Confidence scores and data validation
**Professional Formatting:**
- Headers: Bold white text on navy blue background (#1F4E79)
- Data: Clean 11pt font with professional alignment
- Borders: Thin borders around all data cells
- Columns: Auto-sized for optimal readability (15-50 characters)
- Layout: Business-ready presentation format
=== ERROR HANDLING PROCEDURES ===
**Package Installation Issues:**
- Try: pip install --user openpyxl pandas
- Try: python3 -m pip install openpyxl pandas
- Try: pip install --no-cache-dir openpyxl
**Revenue Data Loading Issues:**
- Verify arranged_financial_data.json exists
- Check JSON syntax and structure
- Ensure revenue categories are present
**Excel Generation Issues:**
- Log exact openpyxl error messages
- Try simplified formatting if complex formatting fails
- Check file write permissions in directory
- Verify Python version compatibility
**File Verification Issues:**
- Check file exists and has reasonable size (>5KB)
- Verify Excel file can be opened without corruption
- Confirm all expected worksheets are present
=== SUCCESS CRITERIA ===
Revenue Excel generation is successful ONLY if:
βœ“ openpyxl package installed without errors
βœ“ Revenue data loaded and parsed successfully
βœ“ Python script executed without errors
βœ“ Excel file created with proper filename format
βœ“ File size > 5KB indicating data was written
βœ“ All 5 revenue worksheets present and populated
βœ“ Professional formatting applied consistently
βœ“ File opens without corruption in Excel
=== PROFESSIONAL FEATURES ===
Your Excel report MUST include:
- **Corporate Design**: Professional navy blue headers with white text
- **Business Layout**: Clean, executive-ready formatting
- **Data Integrity**: All original revenue values preserved exactly
- **User Experience**: Auto-sized columns, proper alignment, clear borders
- **File Management**: Timestamped filename for version control
- **Quality Assurance**: Comprehensive error handling and validation
=== FINAL VALIDATION CHECKLIST ===
Before reporting success, verify:
β–‘ All required packages installed successfully
β–‘ Revenue data JSON loaded and parsed correctly
β–‘ Python script saved and executed without errors
β–‘ Excel file created with timestamped filename
β–‘ File size indicates successful data population (>5KB)
β–‘ All 5 revenue worksheets present and properly named
β–‘ Revenue data populated correctly in each worksheet
β–‘ Professional formatting applied consistently
β–‘ No execution errors or warnings in output
β–‘ File can be opened by Excel applications
Execute now. Focus EXCLUSIVELY on revenue data visualization. Create a professional, publication-ready revenue analysis report for business executives.