Spaces:
Runtime error
Runtime error
<h1 align="center"> | |
π Dolphin TensorRT-LLM Demo | |
</h1> | |
## β Introduction | |
The Dolphin model employs a **Swin Encoder + MBart Decoder** architecture. In the HuggingFace Transformers [Config](https://huggingface.co/ByteDance/Dolphin/blob/main/config.json), | |
its architectures field is specified as "VisionEncoderDecoderModel". **Dolphin**, **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)**, and **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** share the same model architecture. TensorRT-LLM has already supported the Nougat model. | |
Following Nougat's conversion script, we have successfully implemented Dolphin on TensorRT-LLM. | |
**Note:** [prompt_ids](./dolphin_runner.py#L120) MUST be of **int32** type, otherwise TensorRT-LLM will produce incorrect results. | |
## π οΈ Installation | |
> We only test TensorRT-LLM 0.18.1 on Linux. | |
https://nvidia.github.io/TensorRT-LLM/0.18.1/installation/linux.html | |
## β‘ Offline Inference | |
``` | |
export MODEL_NAME="Dolphin" | |
# predict elements reading order | |
python run_dolphin.py \ | |
--batch_size 1 \ | |
--hf_model_dir tmp/hf_models/${MODEL_NAME} \ | |
--visual_engine_dir tmp/trt_engines/${MODEL_NAME}/vision_encoder \ | |
--llm_engine_dir tmp/trt_engines/${MODEL_NAME}/1-gpu/bfloat16 \ | |
--max_new_tokens 4096 \ | |
--repetition_penalty 1.0 \ | |
--input_text "Parse the reading order of this document." \ | |
--image_path "../../demo/page_imgs/page_1.jpeg" | |
# recognize text/latex | |
python run_dolphin.py \ | |
--batch_size 1 \ | |
--hf_model_dir tmp/hf_models/${MODEL_NAME} \ | |
--visual_engine_dir tmp/trt_engines/${MODEL_NAME}/vision_encoder \ | |
--llm_engine_dir tmp/trt_engines/${MODEL_NAME}/1-gpu/bfloat16 \ | |
--max_new_tokens 4096 \ | |
--repetition_penalty 1.0 \ | |
--input_text "Read text in the image." \ | |
--image_path "../../demo/element_imgs/block_formula.jpeg" | |
python run_dolphin.py \ | |
--batch_size 1 \ | |
--hf_model_dir tmp/hf_models/${MODEL_NAME} \ | |
--visual_engine_dir tmp/trt_engines/${MODEL_NAME}/vision_encoder \ | |
--llm_engine_dir tmp/trt_engines/${MODEL_NAME}/1-gpu/bfloat16 \ | |
--max_new_tokens 4096 \ | |
--repetition_penalty 1.0 \ | |
--input_text "Read text in the image." \ | |
--image_path "../../demo/element_imgs/para_1.jpg" | |
# recognize table | |
python run_dolphin.py \ | |
--batch_size 1 \ | |
--hf_model_dir tmp/hf_models/${MODEL_NAME} \ | |
--visual_engine_dir tmp/trt_engines/${MODEL_NAME}/vision_encoder \ | |
--llm_engine_dir tmp/trt_engines/${MODEL_NAME}/1-gpu/bfloat16 \ | |
--max_new_tokens 4096 \ | |
--repetition_penalty 1.0 \ | |
--input_text "Parse the table in the image." \ | |
--image_path "../../demo/element_imgs/table_1.jpeg" | |
``` | |
## β‘ Online Inference | |
``` | |
# 1. Start Api Server | |
export MODEL_NAME="Dolphin" | |
python api_server.py \ | |
--hf_model_dir tmp/hf_models/${MODEL_NAME} \ | |
--visual_engine_dir tmp/trt_engines/${MODEL_NAME}/vision_encoder \ | |
--llm_engine_dir tmp/trt_engines/${MODEL_NAME}/1-gpu/bfloat16 \ | |
--max_batch_size 16 | |
# 2. Predict | |
# predict elements reading order | |
python deployment/tensorrt_llm/api_client.py --image_path ./demo/page_imgs/page_1.jpeg --prompt "Parse the reading order of this document." | |
# recognize text/latex | |
python deployment/tensorrt_llm/api_client.py --image_path ./demo/element_imgs/block_formula.jpeg --prompt "Read text in the image." | |
python deployment/tensorrt_llm/api_client.py --image_path ./demo/element_imgs/para_1.jpg --prompt "Read text in the image." | |
# recognize table | |
python deployment/tensorrt_llm/api_client.py --image_path ./demo/element_imgs/table_1.jpeg --prompt "Parse the table in the image." | |
``` |