Spaces:
Paused
Paused
File size: 7,900 Bytes
ee78b3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
"""
Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
SPDX-License-Identifier: MIT
"""
import os
import warnings
from collections import OrderedDict
from omegaconf import ListConfig
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
os.environ.setdefault("PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION", "python")
import torch
from PIL import Image
from transformers import PreTrainedTokenizerFast
from utils.model import DonutConfig, DonutModel, SwinEncoder
from utils.processor import DolphinProcessor
def try_rename_lagacy_weights(ckpt, output_path=""):
if "state_dict" in ckpt.keys():
ckpt = ckpt["state_dict"]
if "module" in ckpt.keys():
ckpt = ckpt["module"]
new_ckpt = OrderedDict()
for k, v in ckpt.items():
if k.startswith("model."):
k = k[len("model.") :]
if k.startswith("encoder"):
new_ckpt["vpm" + k[len("encoder") :]] = v
elif k.startswith("decoder"):
new_ckpt["llm" + k[len("encoder") :]] = v
else:
new_ckpt[k] = v
if output_path:
torch.save(new_ckpt, output_path)
return new_ckpt
def convert_listconfig_to_list(config):
new_config = {}
for k, v in config.items():
if isinstance(v, ListConfig):
new_config[k] = list(v)
else:
new_config[k] = v
return new_config
class DOLPHIN:
def __init__(self, config, ckpt_path="") -> None:
self.model_args = config.model
self.swin_args = config.model.pop("swin_args")
self.swin_args = convert_listconfig_to_list(self.swin_args)
vision_tower = SwinEncoder(
input_size=self.swin_args["img_size"],
patch_size=self.swin_args["patch_size"],
embed_dim=self.swin_args["embed_dim"],
window_size=self.swin_args["window_size"],
encoder_layer=self.swin_args["encoder_layer"],
num_heads=self.swin_args["num_heads"],
align_long_axis=self.swin_args["align_long_axis"],
)
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=self.model_args.tokenizer_path)
self.tokenizer.pad_token = "<pad>"
self.tokenizer.bos_token = "<s>"
self.tokenizer.eos_token = "</s>"
self.tokenizer.unk_token = "<unk>"
if self.model_args.get("extra_answer_tokens", False):
# print("Allowing multitask training: adding <Answer/> to the tokenizer.")
prompt_end_token = " <Answer/>"
self.tokenizer.add_special_tokens({"additional_special_tokens": sorted(set([prompt_end_token]))})
self.tokenizer._prompt_end_token = prompt_end_token
self.tokenizer._prompt_end_token_id = self.tokenizer.convert_tokens_to_ids(prompt_end_token)
donut_config = DonutConfig(
decoder_layer=self.model_args.decoder_layer,
max_length=self.model_args.max_length,
max_position_embeddings=self.model_args.max_position_embeddings,
hidden_dimension=self.model_args.hidden_dimension,
)
self.model = DonutModel(config=donut_config, vision_tower=vision_tower, tokenizer=self.tokenizer)
if self.model_args.model_name_or_path:
ckpt = torch.load(self.model_args.model_name_or_path)
ckpt = try_rename_lagacy_weights(ckpt)
self.model.load_state_dict(ckpt, strict=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
self.model.to(device)
self.model.eval()
transform_args = {
"input_size": self.swin_args["img_size"],
"max_length": self.model_args.max_length,
}
self.processor = DolphinProcessor({}, self.tokenizer, transform_args=transform_args)
def chat(
self,
question,
image,
return_raw=False,
return_score=False,
return_img_size=False,
only_return_img_size=False,
max_batch_size=16,
):
def _preprocess_image(image):
if isinstance(image, str):
image = Image.open(image).convert("RGB")
if return_img_size or only_return_img_size:
image_tensor, ori_size = self.processor.process_image_for_inference(image, return_img_size=True)
else:
image_tensor = self.processor.process_image_for_inference(image, return_img_size=False)
ori_size = None
return image_tensor, ori_size
def _preprocess_prompt(question):
if self.model_args.get("extra_answer_tokens", False):
if self.tokenizer._prompt_end_token not in question:
question = question + self.tokenizer._prompt_end_token
prompt_ids = self.processor.process_prompt_for_inference(question)
return prompt_ids
def _preprocess_prompt_batch(question):
if self.model_args.get("extra_answer_tokens", False):
for i in range(len(question)):
if self.tokenizer._prompt_end_token not in question[i]:
question[i] = question[i] + self.tokenizer._prompt_end_token
if not question[i].startswith("<s>"):
question[i] = "<s>" + question[i]
return question
def _postprocess(output, question):
output = output.replace("<s>", "").replace(question, "").replace("</s>", "").replace("<pad>", "")
if self.model_args.get("extra_answer_tokens", False):
output = output.split(self.tokenizer._prompt_end_token)[-1]
return output
if isinstance(question, list):
image_tensor_list = []
for i in image:
image_tensor, ori_size = _preprocess_image(i)
image_tensor_list.append(image_tensor)
image_tensor = torch.cat(image_tensor_list, dim=0)
question = _preprocess_prompt_batch(question)
self.processor.tokenizer.padding_side = "left"
prompt_ids = self.processor.tokenizer(
question, add_special_tokens=False, return_tensors="pt", padding=True
).input_ids
else:
image_tensor, ori_size = _preprocess_image(image)
prompt_ids = _preprocess_prompt(question)
if only_return_img_size:
return ori_size
model_output_batch = []
for i in range(0, image_tensor.shape[0], max_batch_size):
image_tensor_batch = image_tensor[i : i + max_batch_size]
prompt_ids_batch = prompt_ids[i : i + max_batch_size]
model_output = self.model.inference(image_tensors=image_tensor_batch, prompt_ids=prompt_ids_batch)
model_output_batch.append(model_output)
model_output = {}
for k, v in model_output_batch[0].items():
if isinstance(v, torch.Tensor):
model_output[k] = sum(
[v_batch[k].cpu().numpy().tolist() for v_batch in model_output_batch],
[],
)
else:
model_output[k] = sum([v_batch[k] for v_batch in model_output_batch], [])
if return_raw:
if return_img_size:
return model_output, ori_size
return model_output
else:
if isinstance(question, list):
output = [_postprocess(model_output["repetitions"][i], question[i]) for i in range(len(question))]
score = model_output["scores"]
else:
output = _postprocess(model_output["repetitions"][0], question)
score = model_output["scores"][0]
if return_score:
return output, score
if return_img_size:
return output, ori_size
return output
|