File size: 7,900 Bytes
ee78b3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
""" 
Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
SPDX-License-Identifier: MIT
"""

import os
import warnings
from collections import OrderedDict

from omegaconf import ListConfig

warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
os.environ.setdefault("PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION", "python")

import torch
from PIL import Image
from transformers import PreTrainedTokenizerFast

from utils.model import DonutConfig, DonutModel, SwinEncoder
from utils.processor import DolphinProcessor


def try_rename_lagacy_weights(ckpt, output_path=""):
    if "state_dict" in ckpt.keys():
        ckpt = ckpt["state_dict"]
    if "module" in ckpt.keys():
        ckpt = ckpt["module"]
    new_ckpt = OrderedDict()
    for k, v in ckpt.items():
        if k.startswith("model."):
            k = k[len("model.") :]
        if k.startswith("encoder"):
            new_ckpt["vpm" + k[len("encoder") :]] = v
        elif k.startswith("decoder"):
            new_ckpt["llm" + k[len("encoder") :]] = v
        else:
            new_ckpt[k] = v
    if output_path:
        torch.save(new_ckpt, output_path)
    return new_ckpt


def convert_listconfig_to_list(config):
    new_config = {}
    for k, v in config.items():
        if isinstance(v, ListConfig):
            new_config[k] = list(v)
        else:
            new_config[k] = v
    return new_config


class DOLPHIN:
    def __init__(self, config, ckpt_path="") -> None:
        self.model_args = config.model
        self.swin_args = config.model.pop("swin_args")
        self.swin_args = convert_listconfig_to_list(self.swin_args)

        vision_tower = SwinEncoder(
            input_size=self.swin_args["img_size"],
            patch_size=self.swin_args["patch_size"],
            embed_dim=self.swin_args["embed_dim"],
            window_size=self.swin_args["window_size"],
            encoder_layer=self.swin_args["encoder_layer"],
            num_heads=self.swin_args["num_heads"],
            align_long_axis=self.swin_args["align_long_axis"],
        )

        self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=self.model_args.tokenizer_path)
        self.tokenizer.pad_token = "<pad>"
        self.tokenizer.bos_token = "<s>"
        self.tokenizer.eos_token = "</s>"
        self.tokenizer.unk_token = "<unk>"

        if self.model_args.get("extra_answer_tokens", False):
            # print("Allowing multitask training: adding <Answer/> to the tokenizer.")
            prompt_end_token = " <Answer/>"
            self.tokenizer.add_special_tokens({"additional_special_tokens": sorted(set([prompt_end_token]))})
            self.tokenizer._prompt_end_token = prompt_end_token
            self.tokenizer._prompt_end_token_id = self.tokenizer.convert_tokens_to_ids(prompt_end_token)

        donut_config = DonutConfig(
            decoder_layer=self.model_args.decoder_layer,
            max_length=self.model_args.max_length,
            max_position_embeddings=self.model_args.max_position_embeddings,
            hidden_dimension=self.model_args.hidden_dimension,
        )

        self.model = DonutModel(config=donut_config, vision_tower=vision_tower, tokenizer=self.tokenizer)
        if self.model_args.model_name_or_path:
            ckpt = torch.load(self.model_args.model_name_or_path)
            ckpt = try_rename_lagacy_weights(ckpt)
            self.model.load_state_dict(ckpt, strict=True)

        device = "cuda" if torch.cuda.is_available() else "cpu"
        self.model.to(device)
        self.model.eval()
        transform_args = {
            "input_size": self.swin_args["img_size"],
            "max_length": self.model_args.max_length,
        }
        self.processor = DolphinProcessor({}, self.tokenizer, transform_args=transform_args)

    def chat(
        self,
        question,
        image,
        return_raw=False,
        return_score=False,
        return_img_size=False,
        only_return_img_size=False,
        max_batch_size=16,
    ):

        def _preprocess_image(image):
            if isinstance(image, str):
                image = Image.open(image).convert("RGB")
            if return_img_size or only_return_img_size:
                image_tensor, ori_size = self.processor.process_image_for_inference(image, return_img_size=True)
            else:
                image_tensor = self.processor.process_image_for_inference(image, return_img_size=False)
                ori_size = None
            return image_tensor, ori_size

        def _preprocess_prompt(question):
            if self.model_args.get("extra_answer_tokens", False):
                if self.tokenizer._prompt_end_token not in question:
                    question = question + self.tokenizer._prompt_end_token
            prompt_ids = self.processor.process_prompt_for_inference(question)
            return prompt_ids

        def _preprocess_prompt_batch(question):
            if self.model_args.get("extra_answer_tokens", False):
                for i in range(len(question)):
                    if self.tokenizer._prompt_end_token not in question[i]:
                        question[i] = question[i] + self.tokenizer._prompt_end_token
                    if not question[i].startswith("<s>"):
                        question[i] = "<s>" + question[i]
            return question

        def _postprocess(output, question):
            output = output.replace("<s>", "").replace(question, "").replace("</s>", "").replace("<pad>", "")
            if self.model_args.get("extra_answer_tokens", False):
                output = output.split(self.tokenizer._prompt_end_token)[-1]
            return output

        if isinstance(question, list):
            image_tensor_list = []
            for i in image:
                image_tensor, ori_size = _preprocess_image(i)
                image_tensor_list.append(image_tensor)
            image_tensor = torch.cat(image_tensor_list, dim=0)

            question = _preprocess_prompt_batch(question)
            self.processor.tokenizer.padding_side = "left"
            prompt_ids = self.processor.tokenizer(
                question, add_special_tokens=False, return_tensors="pt", padding=True
            ).input_ids
        else:
            image_tensor, ori_size = _preprocess_image(image)
            prompt_ids = _preprocess_prompt(question)

        if only_return_img_size:
            return ori_size

        model_output_batch = []
        for i in range(0, image_tensor.shape[0], max_batch_size):
            image_tensor_batch = image_tensor[i : i + max_batch_size]
            prompt_ids_batch = prompt_ids[i : i + max_batch_size]
            model_output = self.model.inference(image_tensors=image_tensor_batch, prompt_ids=prompt_ids_batch)
            model_output_batch.append(model_output)
        model_output = {}
        for k, v in model_output_batch[0].items():
            if isinstance(v, torch.Tensor):
                model_output[k] = sum(
                    [v_batch[k].cpu().numpy().tolist() for v_batch in model_output_batch],
                    [],
                )
            else:
                model_output[k] = sum([v_batch[k] for v_batch in model_output_batch], [])

        if return_raw:
            if return_img_size:
                return model_output, ori_size
            return model_output
        else:
            if isinstance(question, list):
                output = [_postprocess(model_output["repetitions"][i], question[i]) for i in range(len(question))]
                score = model_output["scores"]
            else:
                output = _postprocess(model_output["repetitions"][0], question)
                score = model_output["scores"][0]
            if return_score:
                return output, score
            if return_img_size:
                return output, ori_size
            return output