File size: 9,446 Bytes
ee78b3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
""" 
Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
SPDX-License-Identifier: MIT
"""

import argparse
import glob
import os

import cv2
from omegaconf import OmegaConf
from PIL import Image

from chat import DOLPHIN
from utils.utils import *


def process_document(document_path, model, save_dir, max_batch_size):
    """Parse documents - Handles both images and PDFs"""
    file_ext = os.path.splitext(document_path)[1].lower()
    
    if file_ext == '.pdf':
        # Process PDF file
        # Convert PDF to images
        images = convert_pdf_to_images(document_path)
        if not images:
            raise Exception(f"Failed to convert PDF {document_path} to images")
        
        all_results = []
        
        # Process each page
        for page_idx, pil_image in enumerate(images):
            print(f"Processing page {page_idx + 1}/{len(images)}")
            
            # Generate output name for this page
            base_name = os.path.splitext(os.path.basename(document_path))[0]
            page_name = f"{base_name}_page_{page_idx + 1:03d}"
            
            # Process this page (don't save individual page results)
            json_path, recognition_results = process_single_image(
                pil_image, model, save_dir, page_name, max_batch_size, save_individual=False
            )
            
            # Add page information to results
            page_results = {
                "page_number": page_idx + 1,
                "elements": recognition_results
            }
            all_results.append(page_results)
        
        # Save combined results for multi-page PDF
        combined_json_path = save_combined_pdf_results(all_results, document_path, save_dir)
        
        return combined_json_path, all_results

    else:
        # Process regular image file
        pil_image = Image.open(document_path).convert("RGB")
        base_name = os.path.splitext(os.path.basename(document_path))[0]
        return process_single_image(pil_image, model, save_dir, base_name, max_batch_size)


def process_single_image(image, model, save_dir, image_name, max_batch_size, save_individual=True):
    """Process a single image (either from file or converted from PDF page)
    
    Args:
        image: PIL Image object
        model: DOLPHIN model instance
        save_dir: Directory to save results
        image_name: Name for the output file
        max_batch_size: Maximum batch size for processing
        save_individual: Whether to save individual results (False for PDF pages)
        
    Returns:
        Tuple of (json_path, recognition_results)
    """
    # Stage 1: Page-level layout and reading order parsing
    layout_output = model.chat("Parse the reading order of this document.", image)

    # Stage 2: Element-level content parsing
    padded_image, dims = prepare_image(image)
    recognition_results = process_elements(layout_output, padded_image, dims, model, max_batch_size, save_dir, image_name)

    # Save outputs only if requested (skip for PDF pages)
    json_path = None
    if save_individual:
        # Create a dummy image path for save_outputs function
        dummy_image_path = f"{image_name}.jpg"  # Extension doesn't matter, only basename is used
        json_path = save_outputs(recognition_results, dummy_image_path, save_dir)

    return json_path, recognition_results


def process_elements(layout_results, padded_image, dims, model, max_batch_size, save_dir=None, image_name=None):
    """Parse all document elements with parallel decoding"""
    layout_results = parse_layout_string(layout_results)

    text_table_elements = []  # Elements that need processing
    figure_results = []  # Figure elements (no processing needed)
    previous_box = None
    reading_order = 0

    # Collect elements for processing
    for bbox, label in layout_results:
        try:
            # Adjust coordinates
            x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
                bbox, padded_image, dims, previous_box
            )

            # Crop and parse element
            cropped = padded_image[y1:y2, x1:x2]
            if cropped.size > 0 and cropped.shape[0] > 3 and cropped.shape[1] > 3:
                if label == "fig":
                    pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
                    
                    figure_filename = save_figure_to_local(pil_crop, save_dir, image_name, reading_order)
                    
                    # For figure regions, store relative path instead of base64
                    figure_results.append(
                        {
                            "label": label,
                            "text": f"![Figure](figures/{figure_filename})",
                            "figure_path": f"figures/{figure_filename}",
                            "bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
                            "reading_order": reading_order,
                        }
                    )
                else:
                    # For text or table regions, prepare for parsing
                    pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
                    prompt = "Parse the table in the image." if label == "tab" else "Read text in the image."
                    text_table_elements.append(
                        {
                            "crop": pil_crop,
                            "prompt": prompt,
                            "label": label,
                            "bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
                            "reading_order": reading_order,
                        }
                    )

            reading_order += 1

        except Exception as e:
            print(f"Error processing bbox with label {label}: {str(e)}")
            continue

    # Parse text/table elements in parallel
    recognition_results = figure_results
    if text_table_elements:
        crops_list = [elem["crop"] for elem in text_table_elements]
        prompts_list = [elem["prompt"] for elem in text_table_elements]

        # Inference in batch
        batch_results = model.chat(prompts_list, crops_list, max_batch_size=max_batch_size)

        # Add batch results to recognition_results
        for i, result in enumerate(batch_results):
            elem = text_table_elements[i]
            recognition_results.append(
                {
                    "label": elem["label"],
                    "bbox": elem["bbox"],
                    "text": result.strip(),
                    "reading_order": elem["reading_order"],
                }
            )

    # Sort elements by reading order
    recognition_results.sort(key=lambda x: x.get("reading_order", 0))

    return recognition_results


def main():
    parser = argparse.ArgumentParser(description="Document parsing based on DOLPHIN")
    parser.add_argument("--config", default="./config/Dolphin.yaml", help="Path to configuration file")
    parser.add_argument("--input_path", type=str, default="./demo", help="Path to input image/PDF or directory of files")
    parser.add_argument(
        "--save_dir",
        type=str,
        default=None,
        help="Directory to save parsing results (default: same as input directory)",
    )
    parser.add_argument(
        "--max_batch_size",
        type=int,
        default=4,
        help="Maximum number of document elements to parse in a single batch (default: 4)",
    )
    args = parser.parse_args()

    # Load Model
    config = OmegaConf.load(args.config)
    model = DOLPHIN(config)

    # Collect Document Files (images and PDFs)
    if os.path.isdir(args.input_path):
        # Support both image and PDF files
        file_extensions = [".jpg", ".jpeg", ".png", ".JPG", ".JPEG", ".PNG", ".pdf", ".PDF"]
        
        document_files = []
        for ext in file_extensions:
            document_files.extend(glob.glob(os.path.join(args.input_path, f"*{ext}")))
        document_files = sorted(document_files)
    else:
        if not os.path.exists(args.input_path):
            raise FileNotFoundError(f"Input path {args.input_path} does not exist")
        
        # Check if it's a supported file type
        file_ext = os.path.splitext(args.input_path)[1].lower()
        supported_exts = ['.jpg', '.jpeg', '.png', '.pdf']
        
        if file_ext not in supported_exts:
            raise ValueError(f"Unsupported file type: {file_ext}. Supported types: {supported_exts}")
        
        document_files = [args.input_path]

    save_dir = args.save_dir or (
        args.input_path if os.path.isdir(args.input_path) else os.path.dirname(args.input_path)
    )
    setup_output_dirs(save_dir)

    total_samples = len(document_files)
    print(f"\nTotal files to process: {total_samples}")

    # Process All Document Files
    for file_path in document_files:
        print(f"\nProcessing {file_path}")
        try:
            json_path, recognition_results = process_document(
                document_path=file_path,
                model=model,
                save_dir=save_dir,
                max_batch_size=args.max_batch_size,
            )

            print(f"Processing completed. Results saved to {save_dir}")

        except Exception as e:
            print(f"Error processing {file_path}: {str(e)}")
            continue


if __name__ == "__main__":
    main()