Spaces:
Paused
Paused
File size: 13,684 Bytes
ee78b3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
"""
Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
SPDX-License-Identifier: MIT
"""
import argparse
import glob
import os
import cv2
import torch
from PIL import Image
from transformers import AutoProcessor, VisionEncoderDecoderModel
from utils.utils import *
class DOLPHIN:
def __init__(self, model_id_or_path):
"""Initialize the Hugging Face model
Args:
model_id_or_path: Path to local model or Hugging Face model ID
"""
# Load model from local path or Hugging Face hub
self.processor = AutoProcessor.from_pretrained(model_id_or_path)
self.model = VisionEncoderDecoderModel.from_pretrained(model_id_or_path)
self.model.eval()
# Set device and precision
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model.to(self.device)
self.model = self.model.half() # Always use half precision by default
# set tokenizer
self.tokenizer = self.processor.tokenizer
def chat(self, prompt, image):
"""Process an image or batch of images with the given prompt(s)
Args:
prompt: Text prompt or list of prompts to guide the model
image: PIL Image or list of PIL Images to process
Returns:
Generated text or list of texts from the model
"""
# Check if we're dealing with a batch
is_batch = isinstance(image, list)
if not is_batch:
# Single image, wrap it in a list for consistent processing
images = [image]
prompts = [prompt]
else:
# Batch of images
images = image
prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
# Prepare image
batch_inputs = self.processor(images, return_tensors="pt", padding=True)
batch_pixel_values = batch_inputs.pixel_values.half().to(self.device)
# Prepare prompt
prompts = [f"<s>{p} <Answer/>" for p in prompts]
batch_prompt_inputs = self.tokenizer(
prompts,
add_special_tokens=False,
return_tensors="pt"
)
batch_prompt_ids = batch_prompt_inputs.input_ids.to(self.device)
batch_attention_mask = batch_prompt_inputs.attention_mask.to(self.device)
# Generate text
outputs = self.model.generate(
pixel_values=batch_pixel_values,
decoder_input_ids=batch_prompt_ids,
decoder_attention_mask=batch_attention_mask,
min_length=1,
max_length=4096,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
use_cache=True,
bad_words_ids=[[self.tokenizer.unk_token_id]],
return_dict_in_generate=True,
do_sample=False,
num_beams=1,
repetition_penalty=1.1,
temperature=1.0
)
# Process output
sequences = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
# Clean prompt text from output
results = []
for i, sequence in enumerate(sequences):
cleaned = sequence.replace(prompts[i], "").replace("<pad>", "").replace("</s>", "").strip()
results.append(cleaned)
# Return a single result for single image input
if not is_batch:
return results[0]
return results
def process_document(document_path, model, save_dir, max_batch_size=None):
"""Parse documents with two stages - Handles both images and PDFs"""
file_ext = os.path.splitext(document_path)[1].lower()
if file_ext == '.pdf':
# Process PDF file
# Convert PDF to images
images = convert_pdf_to_images(document_path)
if not images:
raise Exception(f"Failed to convert PDF {document_path} to images")
all_results = []
# Process each page
for page_idx, pil_image in enumerate(images):
print(f"Processing page {page_idx + 1}/{len(images)}")
# Generate output name for this page
base_name = os.path.splitext(os.path.basename(document_path))[0]
page_name = f"{base_name}_page_{page_idx + 1:03d}"
# Process this page (don't save individual page results)
json_path, recognition_results = process_single_image(
pil_image, model, save_dir, page_name, max_batch_size, save_individual=False
)
# Add page information to results
page_results = {
"page_number": page_idx + 1,
"elements": recognition_results
}
all_results.append(page_results)
# Save combined results for multi-page PDF
combined_json_path = save_combined_pdf_results(all_results, document_path, save_dir)
return combined_json_path, all_results
else:
# Process regular image file
pil_image = Image.open(document_path).convert("RGB")
base_name = os.path.splitext(os.path.basename(document_path))[0]
return process_single_image(pil_image, model, save_dir, base_name, max_batch_size)
def process_single_image(image, model, save_dir, image_name, max_batch_size=None, save_individual=True):
"""Process a single image (either from file or converted from PDF page)
Args:
image: PIL Image object
model: DOLPHIN model instance
save_dir: Directory to save results
image_name: Name for the output file
max_batch_size: Maximum batch size for processing
save_individual: Whether to save individual results (False for PDF pages)
Returns:
Tuple of (json_path, recognition_results)
"""
# Stage 1: Page-level layout and reading order parsing
layout_output = model.chat("Parse the reading order of this document.", image)
# Stage 2: Element-level content parsing
padded_image, dims = prepare_image(image)
recognition_results = process_elements(layout_output, padded_image, dims, model, max_batch_size, save_dir, image_name)
# Save outputs only if requested (skip for PDF pages)
json_path = None
if save_individual:
# Create a dummy image path for save_outputs function
dummy_image_path = f"{image_name}.jpg" # Extension doesn't matter, only basename is used
json_path = save_outputs(recognition_results, dummy_image_path, save_dir)
return json_path, recognition_results
def process_elements(layout_results, padded_image, dims, model, max_batch_size, save_dir=None, image_name=None):
"""Parse all document elements with parallel decoding"""
layout_results = parse_layout_string(layout_results)
# Store text and table elements separately
text_elements = [] # Text elements
table_elements = [] # Table elements
figure_results = [] # Image elements (no processing needed)
previous_box = None
reading_order = 0
# Collect elements to process and group by type
for bbox, label in layout_results:
try:
# Adjust coordinates
x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
bbox, padded_image, dims, previous_box
)
# Crop and parse element
cropped = padded_image[y1:y2, x1:x2]
if cropped.size > 0 and cropped.shape[0] > 3 and cropped.shape[1] > 3:
if label == "fig":
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
figure_filename = save_figure_to_local(pil_crop, save_dir, image_name, reading_order)
# For figure regions, store relative path instead of base64
figure_results.append(
{
"label": label,
"text": f"",
"figure_path": f"figures/{figure_filename}",
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
"reading_order": reading_order,
}
)
else:
# Prepare element for parsing
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
element_info = {
"crop": pil_crop,
"label": label,
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
"reading_order": reading_order,
}
# Group by type
if label == "tab":
table_elements.append(element_info)
else: # Text elements
text_elements.append(element_info)
reading_order += 1
except Exception as e:
print(f"Error processing bbox with label {label}: {str(e)}")
continue
# Initialize results list
recognition_results = figure_results.copy()
# Process text elements (in batches)
if text_elements:
text_results = process_element_batch(text_elements, model, "Read text in the image.", max_batch_size)
recognition_results.extend(text_results)
# Process table elements (in batches)
if table_elements:
table_results = process_element_batch(table_elements, model, "Parse the table in the image.", max_batch_size)
recognition_results.extend(table_results)
# Sort elements by reading order
recognition_results.sort(key=lambda x: x.get("reading_order", 0))
return recognition_results
def process_element_batch(elements, model, prompt, max_batch_size=None):
"""Process elements of the same type in batches"""
results = []
# Determine batch size
batch_size = len(elements)
if max_batch_size is not None and max_batch_size > 0:
batch_size = min(batch_size, max_batch_size)
# Process in batches
for i in range(0, len(elements), batch_size):
batch_elements = elements[i:i+batch_size]
crops_list = [elem["crop"] for elem in batch_elements]
# Use the same prompt for all elements in the batch
prompts_list = [prompt] * len(crops_list)
# Batch inference
batch_results = model.chat(prompts_list, crops_list)
# Add results
for j, result in enumerate(batch_results):
elem = batch_elements[j]
results.append({
"label": elem["label"],
"bbox": elem["bbox"],
"text": result.strip(),
"reading_order": elem["reading_order"],
})
return results
def main():
parser = argparse.ArgumentParser(description="Document parsing based on DOLPHIN")
parser.add_argument("--model_path", default="./hf_model", help="Path to Hugging Face model")
parser.add_argument("--input_path", type=str, default="./demo", help="Path to input image/PDF or directory of files")
parser.add_argument(
"--save_dir",
type=str,
default=None,
help="Directory to save parsing results (default: same as input directory)",
)
parser.add_argument(
"--max_batch_size",
type=int,
default=16,
help="Maximum number of document elements to parse in a single batch (default: 16)",
)
args = parser.parse_args()
# Load Model
model = DOLPHIN(args.model_path)
# Collect Document Files (images and PDFs)
if os.path.isdir(args.input_path):
# Support both image and PDF files
file_extensions = [".jpg", ".jpeg", ".png", ".JPG", ".JPEG", ".PNG", ".pdf", ".PDF"]
document_files = []
for ext in file_extensions:
document_files.extend(glob.glob(os.path.join(args.input_path, f"*{ext}")))
document_files = sorted(document_files)
else:
if not os.path.exists(args.input_path):
raise FileNotFoundError(f"Input path {args.input_path} does not exist")
# Check if it's a supported file type
file_ext = os.path.splitext(args.input_path)[1].lower()
supported_exts = ['.jpg', '.jpeg', '.png', '.pdf']
if file_ext not in supported_exts:
raise ValueError(f"Unsupported file type: {file_ext}. Supported types: {supported_exts}")
document_files = [args.input_path]
save_dir = args.save_dir or (
args.input_path if os.path.isdir(args.input_path) else os.path.dirname(args.input_path)
)
setup_output_dirs(save_dir)
total_samples = len(document_files)
print(f"\nTotal files to process: {total_samples}")
# Process All Document Files
for file_path in document_files:
print(f"\nProcessing {file_path}")
try:
json_path, recognition_results = process_document(
document_path=file_path,
model=model,
save_dir=save_dir,
max_batch_size=args.max_batch_size,
)
print(f"Processing completed. Results saved to {save_dir}")
except Exception as e:
print(f"Error processing {file_path}: {str(e)}")
continue
if __name__ == "__main__":
main()
|