File size: 27,838 Bytes
ee78b3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
"""
DOLPHIN PDF Document AI - Final Version
Optimized for HuggingFace Spaces NVIDIA T4 Small deployment
"""

import gradio as gr
import json
import markdown
import cv2
import numpy as np
from PIL import Image
from transformers import AutoProcessor, VisionEncoderDecoderModel, Gemma3nForConditionalGeneration, pipeline
import torch
try:
    from sentence_transformers import SentenceTransformer
    import numpy as np
    from sklearn.metrics.pairwise import cosine_similarity
    import google.generativeai as genai
    RAG_DEPENDENCIES_AVAILABLE = True
except ImportError as e:
    print(f"RAG dependencies not available: {e}")
    print("Please install: pip install sentence-transformers scikit-learn google-generativeai")
    RAG_DEPENDENCIES_AVAILABLE = False
    SentenceTransformer = None
import os
import tempfile
import uuid
import base64
import io
from utils.utils import *
from utils.markdown_utils import MarkdownConverter

# Math extension is optional for enhanced math rendering
MATH_EXTENSION_AVAILABLE = False
try:
    from mdx_math import MathExtension
    MATH_EXTENSION_AVAILABLE = True
except ImportError:
    pass


class DOLPHIN:
    def __init__(self, model_id_or_path):
        """Initialize the Hugging Face model optimized for T4 Small"""
        self.processor = AutoProcessor.from_pretrained(model_id_or_path)
        self.model = VisionEncoderDecoderModel.from_pretrained(
            model_id_or_path,
            torch_dtype=torch.float16,
            device_map="auto" if torch.cuda.is_available() else None
        )
        self.model.eval()
        
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        if not torch.cuda.is_available():
            self.model = self.model.float()
        
        self.tokenizer = self.processor.tokenizer
        
    def chat(self, prompt, image):
        """Process an image or batch of images with the given prompt(s)"""
        is_batch = isinstance(image, list)
        
        if not is_batch:
            images = [image]
            prompts = [prompt]
        else:
            images = image
            prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
        
        batch_inputs = self.processor(images, return_tensors="pt", padding=True)
        batch_pixel_values = batch_inputs.pixel_values
        
        if torch.cuda.is_available():
            batch_pixel_values = batch_pixel_values.half().to(self.device)
        else:
            batch_pixel_values = batch_pixel_values.to(self.device)
        
        prompts = [f"<s>{p} <Answer/>" for p in prompts]
        batch_prompt_inputs = self.tokenizer(
            prompts,
            add_special_tokens=False,
            return_tensors="pt"
        )

        batch_prompt_ids = batch_prompt_inputs.input_ids.to(self.device)
        batch_attention_mask = batch_prompt_inputs.attention_mask.to(self.device)
        
        with torch.no_grad():
            outputs = self.model.generate(
                pixel_values=batch_pixel_values,
                decoder_input_ids=batch_prompt_ids,
                decoder_attention_mask=batch_attention_mask,
                min_length=1,
                max_length=1024,  # Reduced for T4 Small
                pad_token_id=self.tokenizer.pad_token_id,
                eos_token_id=self.tokenizer.eos_token_id,
                use_cache=True,
                bad_words_ids=[[self.tokenizer.unk_token_id]],
                return_dict_in_generate=True,
                do_sample=False,
                num_beams=1,
                repetition_penalty=1.1,
                temperature=1.0
            )
        
        sequences = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
        
        results = []
        for i, sequence in enumerate(sequences):
            cleaned = sequence.replace(prompts[i], "").replace("<pad>", "").replace("</s>", "").strip()
            results.append(cleaned)
            
        if not is_batch:
            return results[0]
        return results


def convert_pdf_to_images_gradio(pdf_file):
    """Convert uploaded PDF file to list of PIL Images"""
    try:
        import pymupdf
        
        if isinstance(pdf_file, str):
            pdf_document = pymupdf.open(pdf_file)
        else:
            pdf_bytes = pdf_file.read()
            pdf_document = pymupdf.open(stream=pdf_bytes, filetype="pdf")
        
        images = []
        for page_num in range(len(pdf_document)):
            page = pdf_document[page_num]
            mat = pymupdf.Matrix(2.0, 2.0)
            pix = page.get_pixmap(matrix=mat)
            img_data = pix.tobytes("png")
            pil_image = Image.open(io.BytesIO(img_data)).convert("RGB")
            images.append(pil_image)
        
        pdf_document.close()
        return images
        
    except Exception as e:
        raise Exception(f"Error converting PDF: {str(e)}")


def process_pdf_document(pdf_file, model, progress=gr.Progress()):
    """Process uploaded PDF file page by page"""
    if pdf_file is None:
        return "No PDF file uploaded", ""
    
    try:
        progress(0.1, desc="Converting PDF to images...")
        images = convert_pdf_to_images_gradio(pdf_file)
        
        if not images:
            return "Failed to convert PDF to images", ""
        
        all_results = []
        
        for page_idx, pil_image in enumerate(images):
            progress((page_idx + 1) / len(images) * 0.8 + 0.1, 
                    desc=f"Processing page {page_idx + 1}/{len(images)}...")
            
            layout_output = model.chat("Parse the reading order of this document.", pil_image)
            
            padded_image, dims = prepare_image(pil_image)
            recognition_results = process_elements_optimized(
                layout_output, 
                padded_image, 
                dims, 
                model, 
                max_batch_size=2  # Smaller batch for T4 Small
            )
            
            try:
                markdown_converter = MarkdownConverter()
                markdown_content = markdown_converter.convert(recognition_results)
            except:
                markdown_content = generate_fallback_markdown(recognition_results)
            
            page_result = {
                "page_number": page_idx + 1,
                "markdown": markdown_content
            }
            all_results.append(page_result)
        
        progress(1.0, desc="Processing complete!")
        
        combined_markdown = "\n\n---\n\n".join([
            f"# Page {result['page_number']}\n\n{result['markdown']}" 
            for result in all_results
        ])
        
        return combined_markdown, "processing_complete"
        
    except Exception as e:
        error_msg = f"Error processing PDF: {str(e)}"
        return error_msg, "error"


def process_elements_optimized(layout_results, padded_image, dims, model, max_batch_size=2):
    """Optimized element processing for T4 Small"""
    layout_results = parse_layout_string(layout_results)
    
    text_elements = []
    table_elements = []
    figure_results = []
    previous_box = None
    reading_order = 0
    
    for bbox, label in layout_results:
        try:
            x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
                bbox, padded_image, dims, previous_box
            )
            
            cropped = padded_image[y1:y2, x1:x2]
            if cropped.size > 0 and cropped.shape[0] > 3 and cropped.shape[1] > 3:
                if label == "fig":
                    pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
                    pil_crop = crop_margin(pil_crop)
                    
                    buffered = io.BytesIO()
                    pil_crop.save(buffered, format="PNG")
                    img_base64 = base64.b64encode(buffered.getvalue()).decode()
                    data_uri = f"data:image/png;base64,{img_base64}"
                    
                    figure_results.append({
                        "label": label,
                        "text": f"![Figure {reading_order}]({data_uri})",
                        "bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
                        "reading_order": reading_order,
                    })
                else:
                    pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
                    element_info = {
                        "crop": pil_crop,
                        "label": label,
                        "bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
                        "reading_order": reading_order,
                    }
                    
                    if label == "tab":
                        table_elements.append(element_info)
                    else:
                        text_elements.append(element_info)
                        
            reading_order += 1
            
        except Exception as e:
            print(f"Error processing element {label}: {str(e)}")
            continue
    
    recognition_results = figure_results.copy()
    
    if text_elements:
        text_results = process_element_batch_optimized(
            text_elements, model, "Read text in the image.", max_batch_size
        )
        recognition_results.extend(text_results)
    
    if table_elements:
        table_results = process_element_batch_optimized(
            table_elements, model, "Parse the table in the image.", max_batch_size
        )
        recognition_results.extend(table_results)
    
    recognition_results.sort(key=lambda x: x.get("reading_order", 0))
    return recognition_results


def process_element_batch_optimized(elements, model, prompt, max_batch_size=2):
    """Process elements in small batches for T4 Small"""
    results = []
    batch_size = min(len(elements), max_batch_size)
    
    for i in range(0, len(elements), batch_size):
        batch_elements = elements[i:i+batch_size]
        crops_list = [elem["crop"] for elem in batch_elements]
        prompts_list = [prompt] * len(crops_list)
        
        batch_results = model.chat(prompts_list, crops_list)
        
        for j, result in enumerate(batch_results):
            elem = batch_elements[j]
            results.append({
                "label": elem["label"],
                "bbox": elem["bbox"],
                "text": result.strip(),
                "reading_order": elem["reading_order"],
            })
            
        del crops_list, batch_elements
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
    
    return results


def generate_fallback_markdown(recognition_results):
    """Generate basic markdown if converter fails"""
    markdown_content = ""
    for element in recognition_results:
        if element["label"] == "tab":
            markdown_content += f"\n\n{element['text']}\n\n"
        elif element["label"] in ["para", "title", "sec", "sub_sec"]:
            markdown_content += f"{element['text']}\n\n"
        elif element["label"] == "fig":
            markdown_content += f"{element['text']}\n\n"
    return markdown_content


# Initialize model
model_path = "./hf_model"
if not os.path.exists(model_path):
    model_path = "ByteDance/DOLPHIN"

# Model paths and configuration
model_path = "./hf_model" if os.path.exists("./hf_model") else "ByteDance/DOLPHIN"
hf_token = os.getenv('HF_TOKEN')

# Don't load models initially - load them on demand
model_status = "βœ… Models ready (Dynamic loading)"

# Initialize embedding model and Gemini API
if RAG_DEPENDENCIES_AVAILABLE:
    try:
        print("Loading embedding model for RAG...")
        embedding_model = SentenceTransformer('all-MiniLM-L6-v2', device='cpu')
        print("βœ… Embedding model loaded successfully (CPU)")
        
        # Initialize Gemini API
        gemini_api_key = os.getenv('GEMINI_API_KEY')
        if gemini_api_key:
            genai.configure(api_key=gemini_api_key)
            gemini_model = genai.GenerativeModel('gemma-3n-e4b-it')
            print("βœ… Gemini API configured successfully")
        else:
            print("❌ GEMINI_API_KEY not found in environment")
            gemini_model = None
    except Exception as e:
        print(f"❌ Error loading models: {e}")
        import traceback
        traceback.print_exc()
        embedding_model = None
        gemini_model = None
else:
    print("❌ RAG dependencies not available")
    embedding_model = None
    gemini_model = None

# Model management functions
def load_dolphin_model():
    """Load DOLPHIN model for PDF processing"""
    global dolphin_model, current_model
    
    if current_model == "dolphin":
        return dolphin_model
    
    # No need to unload chatbot model (using API now)
    
    try:
        print("Loading DOLPHIN model...")
        dolphin_model = DOLPHIN(model_path)
        current_model = "dolphin"
        print(f"βœ… DOLPHIN model loaded (Device: {dolphin_model.device})")
        return dolphin_model
    except Exception as e:
        print(f"❌ Error loading DOLPHIN model: {e}")
        return None

def unload_dolphin_model():
    """Unload DOLPHIN model to free memory"""
    global dolphin_model, current_model
    
    if dolphin_model is not None:
        print("Unloading DOLPHIN model...")
        del dolphin_model
        dolphin_model = None
        if current_model == "dolphin":
            current_model = None
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        print("βœ… DOLPHIN model unloaded")

def initialize_gemini_model():
    """Initialize Gemini API model"""
    global gemini_model
    
    if gemini_model is not None:
        return gemini_model
    
    try:
        gemini_api_key = os.getenv('GEMINI_API_KEY')
        if not gemini_api_key:
            print("❌ GEMINI_API_KEY not found in environment")
            return None
        
        print("Initializing Gemini API...")
        genai.configure(api_key=gemini_api_key)
        gemini_model = genai.GenerativeModel('gemma-3n-e4b-it')
        print("βœ… Gemini API model ready")
        return gemini_model
    except Exception as e:
        print(f"❌ Error initializing Gemini model: {e}")
        import traceback
        traceback.print_exc()
        return None


# Global state for managing tabs
processed_markdown = ""
show_results_tab = False
document_chunks = []
document_embeddings = None

# Global model state
dolphin_model = None
gemini_model = None
current_model = None  # Track which model is currently loaded


def chunk_document(text, chunk_size=1024, overlap=100):
    """Split document into overlapping chunks for RAG - optimized for API quota"""
    words = text.split()
    chunks = []
    
    for i in range(0, len(words), chunk_size - overlap):
        chunk = ' '.join(words[i:i + chunk_size])
        if chunk.strip():
            chunks.append(chunk)
    
    return chunks

def create_embeddings(chunks):
    """Create embeddings for document chunks"""
    if embedding_model is None:
        return None
    
    try:
        # Process in smaller batches on CPU
        batch_size = 32
        embeddings = []
        
        for i in range(0, len(chunks), batch_size):
            batch = chunks[i:i + batch_size]
            batch_embeddings = embedding_model.encode(batch, show_progress_bar=False)
            embeddings.extend(batch_embeddings)
        
        return np.array(embeddings)
    except Exception as e:
        print(f"Error creating embeddings: {e}")
        return None

def retrieve_relevant_chunks(question, chunks, embeddings, top_k=3):
    """Retrieve most relevant chunks for a question"""
    if embedding_model is None or embeddings is None:
        return chunks[:3]  # Fallback to first 3 chunks
    
    try:
        question_embedding = embedding_model.encode([question], show_progress_bar=False)
        similarities = cosine_similarity(question_embedding, embeddings)[0]
        
        # Get top-k most similar chunks
        top_indices = np.argsort(similarities)[-top_k:][::-1]
        relevant_chunks = [chunks[i] for i in top_indices]
        
        return relevant_chunks
    except Exception as e:
        print(f"Error retrieving chunks: {e}")
        return chunks[:3]  # Fallback

def process_uploaded_pdf(pdf_file, progress=gr.Progress()):
    """Main processing function for uploaded PDF"""
    global processed_markdown, show_results_tab, document_chunks, document_embeddings
    
    if pdf_file is None:
        return "❌ No PDF uploaded", gr.Tabs(visible=False)
    
    try:
        # Load DOLPHIN model for PDF processing
        progress(0.1, desc="Loading DOLPHIN model...")
        dolphin = load_dolphin_model()
        
        if dolphin is None:
            return "❌ Failed to load DOLPHIN model", gr.Tabs(visible=False)
        
        # Process PDF
        progress(0.2, desc="Processing PDF...")
        combined_markdown, status = process_pdf_document(pdf_file, dolphin, progress)
        
        if status == "processing_complete":
            processed_markdown = combined_markdown
            
            # Create chunks and embeddings for RAG
            progress(0.9, desc="Creating document chunks for RAG...")
            document_chunks = chunk_document(processed_markdown)
            document_embeddings = create_embeddings(document_chunks)
            print(f"Created {len(document_chunks)} chunks")
            
            # Keep DOLPHIN model loaded for GPU usage
            progress(0.95, desc="Preparing chatbot...")
            
            show_results_tab = True
            progress(1.0, desc="PDF processed successfully!")
            return "βœ… PDF processed successfully! Chatbot is ready in the Chat tab.", gr.Tabs(visible=True)
        else:
            show_results_tab = False
            return combined_markdown, gr.Tabs(visible=False)
            
    except Exception as e:
        show_results_tab = False
        error_msg = f"❌ Error processing PDF: {str(e)}"
        return error_msg, gr.Tabs(visible=False)


def get_processed_markdown():
    """Return the processed markdown content"""
    global processed_markdown
    return processed_markdown if processed_markdown else "No document processed yet."


def clear_all():
    """Clear all data and hide results tab"""
    global processed_markdown, show_results_tab, document_chunks, document_embeddings
    processed_markdown = ""
    show_results_tab = False
    document_chunks = []
    document_embeddings = None
    
    # Unload DOLPHIN model
    unload_dolphin_model()
    
    return None, "", gr.Tabs(visible=False)


# Create Gradio interface
with gr.Blocks(
    title="DOLPHIN PDF AI", 
    theme=gr.themes.Soft(),
    css="""
    @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
    
    * {
        font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif !important;
    }
    
    .main-container { 
        max-width: 1000px; 
        margin: 0 auto; 
    }
    .upload-container { 
        text-align: center; 
        padding: 40px 20px;
        border: 2px dashed #e0e0e0;
        border-radius: 15px;
        margin: 20px 0;
    }
    .upload-button {
        font-size: 18px !important;
        padding: 15px 30px !important;
        margin: 20px 0 !important;
        font-weight: 600 !important;
    }
    .status-message {
        text-align: center;
        padding: 15px;
        margin: 10px 0;
        border-radius: 8px;
        font-weight: 500;
    }
    .chatbot-container {
        max-height: 600px;
    }
    h1, h2, h3 {
        font-weight: 700 !important;
    }
    #progress-container {
        margin: 10px 0;
        min-height: 20px;
    }
    """
) as demo:
    
    with gr.Tabs() as main_tabs:
        # Home Tab
        with gr.TabItem("🏠 Home", id="home"):
            embedding_status = "βœ… RAG ready" if embedding_model else "❌ RAG not loaded"
            gemini_status = "βœ… Gemini API ready" if gemini_model else "❌ Gemini API not configured"
            current_status = f"Currently loaded: {current_model or 'None'}"
            gr.Markdown(
                "# Scholar Express\n"
                "### Upload a research paper to get a web-friendly version and an AI chatbot powered by Gemini API. DOLPHIN model runs on GPU for optimal performance.\n"
                f"**System:** {model_status}\n"
                f"**RAG System:** {embedding_status}\n"
                f"**Gemini API:** {gemini_status}\n"
                f"**Status:** {current_status}"
            )
            
            with gr.Column(elem_classes="upload-container"):
                gr.Markdown("## πŸ“„ Upload Your PDF Document")
                
                pdf_input = gr.File(
                    file_types=[".pdf"],
                    label="",
                    height=150,
                    elem_id="pdf_upload"
                )
                
                process_btn = gr.Button(
                    "πŸš€ Process PDF", 
                    variant="primary", 
                    size="lg",
                    elem_classes="upload-button"
                )
                
                clear_btn = gr.Button(
                    "πŸ—‘οΈ Clear", 
                    variant="secondary"
                )
            
            # Dedicated progress space
            progress_space = gr.HTML(
                value="",
                visible=False,
                elem_id="progress-container"
            )
            
            # Status output (hidden during processing)
            status_output = gr.Markdown(
                "",
                elem_classes="status-message"
            )
        
        # Results Tab (initially hidden)
        with gr.TabItem("πŸ“– Document", id="results", visible=False) as results_tab:
            gr.Markdown("## Processed Document")
            
            markdown_display = gr.Markdown(
                value="",
                latex_delimiters=[
                    {"left": "$$", "right": "$$", "display": True},
                    {"left": "$", "right": "$", "display": False}
                ],
                height=700
            )
        
        # Chatbot Tab (initially hidden)
        with gr.TabItem("πŸ’¬ Chat", id="chat", visible=False) as chat_tab:
            gr.Markdown("## Ask Questions About Your Document")
            
            chatbot = gr.Chatbot(
                value=[],
                height=500,
                elem_classes="chatbot-container",
                placeholder="Your conversation will appear here once you process a document..."
            )
            
            with gr.Row():
                msg_input = gr.Textbox(
                    placeholder="Ask a question about the processed document...",
                    scale=4,
                    container=False
                )
                send_btn = gr.Button("Send", variant="primary", scale=1)
            
            gr.Markdown(
                "*Ask questions about your processed document. The AI uses RAG (Retrieval-Augmented Generation) with Gemini API to find relevant sections and provide accurate answers.*",
                elem_id="chat-notice"
            )
    
    # Event handlers
    process_btn.click(
        fn=process_uploaded_pdf,
        inputs=[pdf_input],
        outputs=[status_output, results_tab],
        show_progress=True
    ).then(
        fn=get_processed_markdown,
        outputs=[markdown_display]
    ).then(
        fn=lambda: gr.TabItem(visible=True),
        outputs=[chat_tab]
    )
    
    clear_btn.click(
        fn=clear_all,
        outputs=[pdf_input, status_output, results_tab]
    ).then(
        fn=lambda: gr.HTML(visible=False),
        outputs=[progress_space]
    ).then(
        fn=lambda: gr.TabItem(visible=False),
        outputs=[chat_tab]
    )
    
    # Chatbot functionality with Gemini API
    def chatbot_response(message, history):
        if not message.strip():
            return history
        
        if not processed_markdown:
            return history + [[message, "❌ Please process a PDF document first before asking questions."]]
        
        try:
            # Initialize Gemini model
            model = initialize_gemini_model()
            
            if model is None:
                return history + [[message, "❌ Failed to initialize Gemini model. Please check your GEMINI_API_KEY."]]
            
            # Use RAG to get relevant chunks from markdown (balanced for performance vs quota)
            if document_chunks and len(document_chunks) > 0:
                relevant_chunks = retrieve_relevant_chunks(message, document_chunks, document_embeddings, top_k=3)
                context = "\n\n".join(relevant_chunks)
                # Smart truncation: aim for ~4000 chars (good context while staying under quota)
                if len(context) > 4000:
                    # Try to cut at sentence boundaries
                    sentences = context[:4000].split('.')
                    context = '.'.join(sentences[:-1]) + '...' if len(sentences) > 1 else context[:4000] + '...'
            else:
                # Fallback to truncated document if RAG fails
                context = processed_markdown[:4000] + "..." if len(processed_markdown) > 4000 else processed_markdown
            
            # Create prompt for Gemini
            prompt = f"""You are a helpful assistant that answers questions about documents. Use the provided context to answer questions accurately and concisely.

Context from the document:
{context}

Question: {message}

Please provide a clear and helpful answer based on the context provided."""
            
            # Generate response using Gemini API with retry logic
            import time
            max_retries = 2
            
            for attempt in range(max_retries):
                try:
                    response = model.generate_content(prompt)
                    response_text = response.text if hasattr(response, 'text') else str(response)
                    return history + [[message, response_text]]
                except Exception as api_error:
                    if "429" in str(api_error) and attempt < max_retries - 1:
                        # Rate limit hit, wait and retry
                        time.sleep(3)
                        continue
                    else:
                        # Other error or final attempt failed
                        if "429" in str(api_error):
                            return history + [[message, "❌ API quota exceeded. Please wait a moment and try again, or check your Gemini API billing."]]
                        else:
                            raise api_error
            
        except Exception as e:
            error_msg = f"❌ Error generating response: {str(e)}"
            print(f"Full error: {e}")
            import traceback
            traceback.print_exc()
            return history + [[message, error_msg]]
    
    send_btn.click(
        fn=chatbot_response,
        inputs=[msg_input, chatbot],
        outputs=[chatbot]
    ).then(
        lambda: "",
        outputs=[msg_input]
    )
    
    # Also allow Enter key to send message
    msg_input.submit(
        fn=chatbot_response,
        inputs=[msg_input, chatbot],
        outputs=[chatbot]
    ).then(
        lambda: "",
        outputs=[msg_input]
    )


if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True,
        max_threads=1,  # Single thread for T4 Small
        inbrowser=False,
        quiet=True
    )