Spaces:
Paused
Paused
File size: 27,838 Bytes
ee78b3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 |
"""
DOLPHIN PDF Document AI - Final Version
Optimized for HuggingFace Spaces NVIDIA T4 Small deployment
"""
import gradio as gr
import json
import markdown
import cv2
import numpy as np
from PIL import Image
from transformers import AutoProcessor, VisionEncoderDecoderModel, Gemma3nForConditionalGeneration, pipeline
import torch
try:
from sentence_transformers import SentenceTransformer
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
import google.generativeai as genai
RAG_DEPENDENCIES_AVAILABLE = True
except ImportError as e:
print(f"RAG dependencies not available: {e}")
print("Please install: pip install sentence-transformers scikit-learn google-generativeai")
RAG_DEPENDENCIES_AVAILABLE = False
SentenceTransformer = None
import os
import tempfile
import uuid
import base64
import io
from utils.utils import *
from utils.markdown_utils import MarkdownConverter
# Math extension is optional for enhanced math rendering
MATH_EXTENSION_AVAILABLE = False
try:
from mdx_math import MathExtension
MATH_EXTENSION_AVAILABLE = True
except ImportError:
pass
class DOLPHIN:
def __init__(self, model_id_or_path):
"""Initialize the Hugging Face model optimized for T4 Small"""
self.processor = AutoProcessor.from_pretrained(model_id_or_path)
self.model = VisionEncoderDecoderModel.from_pretrained(
model_id_or_path,
torch_dtype=torch.float16,
device_map="auto" if torch.cuda.is_available() else None
)
self.model.eval()
self.device = "cuda" if torch.cuda.is_available() else "cpu"
if not torch.cuda.is_available():
self.model = self.model.float()
self.tokenizer = self.processor.tokenizer
def chat(self, prompt, image):
"""Process an image or batch of images with the given prompt(s)"""
is_batch = isinstance(image, list)
if not is_batch:
images = [image]
prompts = [prompt]
else:
images = image
prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
batch_inputs = self.processor(images, return_tensors="pt", padding=True)
batch_pixel_values = batch_inputs.pixel_values
if torch.cuda.is_available():
batch_pixel_values = batch_pixel_values.half().to(self.device)
else:
batch_pixel_values = batch_pixel_values.to(self.device)
prompts = [f"<s>{p} <Answer/>" for p in prompts]
batch_prompt_inputs = self.tokenizer(
prompts,
add_special_tokens=False,
return_tensors="pt"
)
batch_prompt_ids = batch_prompt_inputs.input_ids.to(self.device)
batch_attention_mask = batch_prompt_inputs.attention_mask.to(self.device)
with torch.no_grad():
outputs = self.model.generate(
pixel_values=batch_pixel_values,
decoder_input_ids=batch_prompt_ids,
decoder_attention_mask=batch_attention_mask,
min_length=1,
max_length=1024, # Reduced for T4 Small
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
use_cache=True,
bad_words_ids=[[self.tokenizer.unk_token_id]],
return_dict_in_generate=True,
do_sample=False,
num_beams=1,
repetition_penalty=1.1,
temperature=1.0
)
sequences = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
results = []
for i, sequence in enumerate(sequences):
cleaned = sequence.replace(prompts[i], "").replace("<pad>", "").replace("</s>", "").strip()
results.append(cleaned)
if not is_batch:
return results[0]
return results
def convert_pdf_to_images_gradio(pdf_file):
"""Convert uploaded PDF file to list of PIL Images"""
try:
import pymupdf
if isinstance(pdf_file, str):
pdf_document = pymupdf.open(pdf_file)
else:
pdf_bytes = pdf_file.read()
pdf_document = pymupdf.open(stream=pdf_bytes, filetype="pdf")
images = []
for page_num in range(len(pdf_document)):
page = pdf_document[page_num]
mat = pymupdf.Matrix(2.0, 2.0)
pix = page.get_pixmap(matrix=mat)
img_data = pix.tobytes("png")
pil_image = Image.open(io.BytesIO(img_data)).convert("RGB")
images.append(pil_image)
pdf_document.close()
return images
except Exception as e:
raise Exception(f"Error converting PDF: {str(e)}")
def process_pdf_document(pdf_file, model, progress=gr.Progress()):
"""Process uploaded PDF file page by page"""
if pdf_file is None:
return "No PDF file uploaded", ""
try:
progress(0.1, desc="Converting PDF to images...")
images = convert_pdf_to_images_gradio(pdf_file)
if not images:
return "Failed to convert PDF to images", ""
all_results = []
for page_idx, pil_image in enumerate(images):
progress((page_idx + 1) / len(images) * 0.8 + 0.1,
desc=f"Processing page {page_idx + 1}/{len(images)}...")
layout_output = model.chat("Parse the reading order of this document.", pil_image)
padded_image, dims = prepare_image(pil_image)
recognition_results = process_elements_optimized(
layout_output,
padded_image,
dims,
model,
max_batch_size=2 # Smaller batch for T4 Small
)
try:
markdown_converter = MarkdownConverter()
markdown_content = markdown_converter.convert(recognition_results)
except:
markdown_content = generate_fallback_markdown(recognition_results)
page_result = {
"page_number": page_idx + 1,
"markdown": markdown_content
}
all_results.append(page_result)
progress(1.0, desc="Processing complete!")
combined_markdown = "\n\n---\n\n".join([
f"# Page {result['page_number']}\n\n{result['markdown']}"
for result in all_results
])
return combined_markdown, "processing_complete"
except Exception as e:
error_msg = f"Error processing PDF: {str(e)}"
return error_msg, "error"
def process_elements_optimized(layout_results, padded_image, dims, model, max_batch_size=2):
"""Optimized element processing for T4 Small"""
layout_results = parse_layout_string(layout_results)
text_elements = []
table_elements = []
figure_results = []
previous_box = None
reading_order = 0
for bbox, label in layout_results:
try:
x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
bbox, padded_image, dims, previous_box
)
cropped = padded_image[y1:y2, x1:x2]
if cropped.size > 0 and cropped.shape[0] > 3 and cropped.shape[1] > 3:
if label == "fig":
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
pil_crop = crop_margin(pil_crop)
buffered = io.BytesIO()
pil_crop.save(buffered, format="PNG")
img_base64 = base64.b64encode(buffered.getvalue()).decode()
data_uri = f"data:image/png;base64,{img_base64}"
figure_results.append({
"label": label,
"text": f"",
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
"reading_order": reading_order,
})
else:
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
element_info = {
"crop": pil_crop,
"label": label,
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
"reading_order": reading_order,
}
if label == "tab":
table_elements.append(element_info)
else:
text_elements.append(element_info)
reading_order += 1
except Exception as e:
print(f"Error processing element {label}: {str(e)}")
continue
recognition_results = figure_results.copy()
if text_elements:
text_results = process_element_batch_optimized(
text_elements, model, "Read text in the image.", max_batch_size
)
recognition_results.extend(text_results)
if table_elements:
table_results = process_element_batch_optimized(
table_elements, model, "Parse the table in the image.", max_batch_size
)
recognition_results.extend(table_results)
recognition_results.sort(key=lambda x: x.get("reading_order", 0))
return recognition_results
def process_element_batch_optimized(elements, model, prompt, max_batch_size=2):
"""Process elements in small batches for T4 Small"""
results = []
batch_size = min(len(elements), max_batch_size)
for i in range(0, len(elements), batch_size):
batch_elements = elements[i:i+batch_size]
crops_list = [elem["crop"] for elem in batch_elements]
prompts_list = [prompt] * len(crops_list)
batch_results = model.chat(prompts_list, crops_list)
for j, result in enumerate(batch_results):
elem = batch_elements[j]
results.append({
"label": elem["label"],
"bbox": elem["bbox"],
"text": result.strip(),
"reading_order": elem["reading_order"],
})
del crops_list, batch_elements
if torch.cuda.is_available():
torch.cuda.empty_cache()
return results
def generate_fallback_markdown(recognition_results):
"""Generate basic markdown if converter fails"""
markdown_content = ""
for element in recognition_results:
if element["label"] == "tab":
markdown_content += f"\n\n{element['text']}\n\n"
elif element["label"] in ["para", "title", "sec", "sub_sec"]:
markdown_content += f"{element['text']}\n\n"
elif element["label"] == "fig":
markdown_content += f"{element['text']}\n\n"
return markdown_content
# Initialize model
model_path = "./hf_model"
if not os.path.exists(model_path):
model_path = "ByteDance/DOLPHIN"
# Model paths and configuration
model_path = "./hf_model" if os.path.exists("./hf_model") else "ByteDance/DOLPHIN"
hf_token = os.getenv('HF_TOKEN')
# Don't load models initially - load them on demand
model_status = "β
Models ready (Dynamic loading)"
# Initialize embedding model and Gemini API
if RAG_DEPENDENCIES_AVAILABLE:
try:
print("Loading embedding model for RAG...")
embedding_model = SentenceTransformer('all-MiniLM-L6-v2', device='cpu')
print("β
Embedding model loaded successfully (CPU)")
# Initialize Gemini API
gemini_api_key = os.getenv('GEMINI_API_KEY')
if gemini_api_key:
genai.configure(api_key=gemini_api_key)
gemini_model = genai.GenerativeModel('gemma-3n-e4b-it')
print("β
Gemini API configured successfully")
else:
print("β GEMINI_API_KEY not found in environment")
gemini_model = None
except Exception as e:
print(f"β Error loading models: {e}")
import traceback
traceback.print_exc()
embedding_model = None
gemini_model = None
else:
print("β RAG dependencies not available")
embedding_model = None
gemini_model = None
# Model management functions
def load_dolphin_model():
"""Load DOLPHIN model for PDF processing"""
global dolphin_model, current_model
if current_model == "dolphin":
return dolphin_model
# No need to unload chatbot model (using API now)
try:
print("Loading DOLPHIN model...")
dolphin_model = DOLPHIN(model_path)
current_model = "dolphin"
print(f"β
DOLPHIN model loaded (Device: {dolphin_model.device})")
return dolphin_model
except Exception as e:
print(f"β Error loading DOLPHIN model: {e}")
return None
def unload_dolphin_model():
"""Unload DOLPHIN model to free memory"""
global dolphin_model, current_model
if dolphin_model is not None:
print("Unloading DOLPHIN model...")
del dolphin_model
dolphin_model = None
if current_model == "dolphin":
current_model = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("β
DOLPHIN model unloaded")
def initialize_gemini_model():
"""Initialize Gemini API model"""
global gemini_model
if gemini_model is not None:
return gemini_model
try:
gemini_api_key = os.getenv('GEMINI_API_KEY')
if not gemini_api_key:
print("β GEMINI_API_KEY not found in environment")
return None
print("Initializing Gemini API...")
genai.configure(api_key=gemini_api_key)
gemini_model = genai.GenerativeModel('gemma-3n-e4b-it')
print("β
Gemini API model ready")
return gemini_model
except Exception as e:
print(f"β Error initializing Gemini model: {e}")
import traceback
traceback.print_exc()
return None
# Global state for managing tabs
processed_markdown = ""
show_results_tab = False
document_chunks = []
document_embeddings = None
# Global model state
dolphin_model = None
gemini_model = None
current_model = None # Track which model is currently loaded
def chunk_document(text, chunk_size=1024, overlap=100):
"""Split document into overlapping chunks for RAG - optimized for API quota"""
words = text.split()
chunks = []
for i in range(0, len(words), chunk_size - overlap):
chunk = ' '.join(words[i:i + chunk_size])
if chunk.strip():
chunks.append(chunk)
return chunks
def create_embeddings(chunks):
"""Create embeddings for document chunks"""
if embedding_model is None:
return None
try:
# Process in smaller batches on CPU
batch_size = 32
embeddings = []
for i in range(0, len(chunks), batch_size):
batch = chunks[i:i + batch_size]
batch_embeddings = embedding_model.encode(batch, show_progress_bar=False)
embeddings.extend(batch_embeddings)
return np.array(embeddings)
except Exception as e:
print(f"Error creating embeddings: {e}")
return None
def retrieve_relevant_chunks(question, chunks, embeddings, top_k=3):
"""Retrieve most relevant chunks for a question"""
if embedding_model is None or embeddings is None:
return chunks[:3] # Fallback to first 3 chunks
try:
question_embedding = embedding_model.encode([question], show_progress_bar=False)
similarities = cosine_similarity(question_embedding, embeddings)[0]
# Get top-k most similar chunks
top_indices = np.argsort(similarities)[-top_k:][::-1]
relevant_chunks = [chunks[i] for i in top_indices]
return relevant_chunks
except Exception as e:
print(f"Error retrieving chunks: {e}")
return chunks[:3] # Fallback
def process_uploaded_pdf(pdf_file, progress=gr.Progress()):
"""Main processing function for uploaded PDF"""
global processed_markdown, show_results_tab, document_chunks, document_embeddings
if pdf_file is None:
return "β No PDF uploaded", gr.Tabs(visible=False)
try:
# Load DOLPHIN model for PDF processing
progress(0.1, desc="Loading DOLPHIN model...")
dolphin = load_dolphin_model()
if dolphin is None:
return "β Failed to load DOLPHIN model", gr.Tabs(visible=False)
# Process PDF
progress(0.2, desc="Processing PDF...")
combined_markdown, status = process_pdf_document(pdf_file, dolphin, progress)
if status == "processing_complete":
processed_markdown = combined_markdown
# Create chunks and embeddings for RAG
progress(0.9, desc="Creating document chunks for RAG...")
document_chunks = chunk_document(processed_markdown)
document_embeddings = create_embeddings(document_chunks)
print(f"Created {len(document_chunks)} chunks")
# Keep DOLPHIN model loaded for GPU usage
progress(0.95, desc="Preparing chatbot...")
show_results_tab = True
progress(1.0, desc="PDF processed successfully!")
return "β
PDF processed successfully! Chatbot is ready in the Chat tab.", gr.Tabs(visible=True)
else:
show_results_tab = False
return combined_markdown, gr.Tabs(visible=False)
except Exception as e:
show_results_tab = False
error_msg = f"β Error processing PDF: {str(e)}"
return error_msg, gr.Tabs(visible=False)
def get_processed_markdown():
"""Return the processed markdown content"""
global processed_markdown
return processed_markdown if processed_markdown else "No document processed yet."
def clear_all():
"""Clear all data and hide results tab"""
global processed_markdown, show_results_tab, document_chunks, document_embeddings
processed_markdown = ""
show_results_tab = False
document_chunks = []
document_embeddings = None
# Unload DOLPHIN model
unload_dolphin_model()
return None, "", gr.Tabs(visible=False)
# Create Gradio interface
with gr.Blocks(
title="DOLPHIN PDF AI",
theme=gr.themes.Soft(),
css="""
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
* {
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif !important;
}
.main-container {
max-width: 1000px;
margin: 0 auto;
}
.upload-container {
text-align: center;
padding: 40px 20px;
border: 2px dashed #e0e0e0;
border-radius: 15px;
margin: 20px 0;
}
.upload-button {
font-size: 18px !important;
padding: 15px 30px !important;
margin: 20px 0 !important;
font-weight: 600 !important;
}
.status-message {
text-align: center;
padding: 15px;
margin: 10px 0;
border-radius: 8px;
font-weight: 500;
}
.chatbot-container {
max-height: 600px;
}
h1, h2, h3 {
font-weight: 700 !important;
}
#progress-container {
margin: 10px 0;
min-height: 20px;
}
"""
) as demo:
with gr.Tabs() as main_tabs:
# Home Tab
with gr.TabItem("π Home", id="home"):
embedding_status = "β
RAG ready" if embedding_model else "β RAG not loaded"
gemini_status = "β
Gemini API ready" if gemini_model else "β Gemini API not configured"
current_status = f"Currently loaded: {current_model or 'None'}"
gr.Markdown(
"# Scholar Express\n"
"### Upload a research paper to get a web-friendly version and an AI chatbot powered by Gemini API. DOLPHIN model runs on GPU for optimal performance.\n"
f"**System:** {model_status}\n"
f"**RAG System:** {embedding_status}\n"
f"**Gemini API:** {gemini_status}\n"
f"**Status:** {current_status}"
)
with gr.Column(elem_classes="upload-container"):
gr.Markdown("## π Upload Your PDF Document")
pdf_input = gr.File(
file_types=[".pdf"],
label="",
height=150,
elem_id="pdf_upload"
)
process_btn = gr.Button(
"π Process PDF",
variant="primary",
size="lg",
elem_classes="upload-button"
)
clear_btn = gr.Button(
"ποΈ Clear",
variant="secondary"
)
# Dedicated progress space
progress_space = gr.HTML(
value="",
visible=False,
elem_id="progress-container"
)
# Status output (hidden during processing)
status_output = gr.Markdown(
"",
elem_classes="status-message"
)
# Results Tab (initially hidden)
with gr.TabItem("π Document", id="results", visible=False) as results_tab:
gr.Markdown("## Processed Document")
markdown_display = gr.Markdown(
value="",
latex_delimiters=[
{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False}
],
height=700
)
# Chatbot Tab (initially hidden)
with gr.TabItem("π¬ Chat", id="chat", visible=False) as chat_tab:
gr.Markdown("## Ask Questions About Your Document")
chatbot = gr.Chatbot(
value=[],
height=500,
elem_classes="chatbot-container",
placeholder="Your conversation will appear here once you process a document..."
)
with gr.Row():
msg_input = gr.Textbox(
placeholder="Ask a question about the processed document...",
scale=4,
container=False
)
send_btn = gr.Button("Send", variant="primary", scale=1)
gr.Markdown(
"*Ask questions about your processed document. The AI uses RAG (Retrieval-Augmented Generation) with Gemini API to find relevant sections and provide accurate answers.*",
elem_id="chat-notice"
)
# Event handlers
process_btn.click(
fn=process_uploaded_pdf,
inputs=[pdf_input],
outputs=[status_output, results_tab],
show_progress=True
).then(
fn=get_processed_markdown,
outputs=[markdown_display]
).then(
fn=lambda: gr.TabItem(visible=True),
outputs=[chat_tab]
)
clear_btn.click(
fn=clear_all,
outputs=[pdf_input, status_output, results_tab]
).then(
fn=lambda: gr.HTML(visible=False),
outputs=[progress_space]
).then(
fn=lambda: gr.TabItem(visible=False),
outputs=[chat_tab]
)
# Chatbot functionality with Gemini API
def chatbot_response(message, history):
if not message.strip():
return history
if not processed_markdown:
return history + [[message, "β Please process a PDF document first before asking questions."]]
try:
# Initialize Gemini model
model = initialize_gemini_model()
if model is None:
return history + [[message, "β Failed to initialize Gemini model. Please check your GEMINI_API_KEY."]]
# Use RAG to get relevant chunks from markdown (balanced for performance vs quota)
if document_chunks and len(document_chunks) > 0:
relevant_chunks = retrieve_relevant_chunks(message, document_chunks, document_embeddings, top_k=3)
context = "\n\n".join(relevant_chunks)
# Smart truncation: aim for ~4000 chars (good context while staying under quota)
if len(context) > 4000:
# Try to cut at sentence boundaries
sentences = context[:4000].split('.')
context = '.'.join(sentences[:-1]) + '...' if len(sentences) > 1 else context[:4000] + '...'
else:
# Fallback to truncated document if RAG fails
context = processed_markdown[:4000] + "..." if len(processed_markdown) > 4000 else processed_markdown
# Create prompt for Gemini
prompt = f"""You are a helpful assistant that answers questions about documents. Use the provided context to answer questions accurately and concisely.
Context from the document:
{context}
Question: {message}
Please provide a clear and helpful answer based on the context provided."""
# Generate response using Gemini API with retry logic
import time
max_retries = 2
for attempt in range(max_retries):
try:
response = model.generate_content(prompt)
response_text = response.text if hasattr(response, 'text') else str(response)
return history + [[message, response_text]]
except Exception as api_error:
if "429" in str(api_error) and attempt < max_retries - 1:
# Rate limit hit, wait and retry
time.sleep(3)
continue
else:
# Other error or final attempt failed
if "429" in str(api_error):
return history + [[message, "β API quota exceeded. Please wait a moment and try again, or check your Gemini API billing."]]
else:
raise api_error
except Exception as e:
error_msg = f"β Error generating response: {str(e)}"
print(f"Full error: {e}")
import traceback
traceback.print_exc()
return history + [[message, error_msg]]
send_btn.click(
fn=chatbot_response,
inputs=[msg_input, chatbot],
outputs=[chatbot]
).then(
lambda: "",
outputs=[msg_input]
)
# Also allow Enter key to send message
msg_input.submit(
fn=chatbot_response,
inputs=[msg_input, chatbot],
outputs=[chatbot]
).then(
lambda: "",
outputs=[msg_input]
)
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
max_threads=1, # Single thread for T4 Small
inbrowser=False,
quiet=True
) |